Dynamic response of RPC-filled steel tubular columns with high load carrying capacity under axial impact loading

2008 ◽  
Vol 14 (6) ◽  
pp. 441-449 ◽  
Author(s):  
Zhimin Tian ◽  
Ping’an Wu ◽  
Jianwei Jia
2019 ◽  
Vol 129 ◽  
pp. 1-4 ◽  
Author(s):  
Jun Cheng ◽  
Yuan Yu ◽  
Jie Guo ◽  
Shuai Wang ◽  
Shengyu Zhu ◽  
...  

2021 ◽  
Vol 156 ◽  
pp. 104121
Author(s):  
S. Liu ◽  
M. Van ◽  
Z. Chen ◽  
J. Angeles ◽  
C. Chen

2013 ◽  
Vol 650 ◽  
pp. 582-587
Author(s):  
Kwang Hee Im ◽  
Ki Youl Kim ◽  
Ki Taek Shin ◽  
Han Hee Lee ◽  
To Kang ◽  
...  

Bush is one of machine and automobile parts like brake used in drums and hubs in particular. Such bush parts are used for bearings of heavy-duty, large cars requiring wear resistance and high load carrying capacity. High temperature diffusion bonding has been applied for holding the both materials of the bushing together, which are outer steel materials and inner composite-sintered bushings. Therefore, it is very important evaluate the bonding integrity in manufacturing process. A simulation has been performed in order to evaluate the maximum defect sizes. Also, ultrasonic C-scan tests were performed for finding the defect in the composite-sintered bushings with the size of inherent flaws.


Author(s):  
Alex Pavlak ◽  
Harry V. Winsor

Capacity measures a system’s ability to survive stress. For example, structures are engineered in part to have the capacity to survive the worst wind loads expected over the life of the structure. Likewise wind electric power systems should have the capacity to reliably survive the worst combination of high load and low wind. A superior approach for quantifying wind’s contribution to system capacity is well known. It is to view wind as a negative load and use the Effective Load Carrying Capacity (ELCC) methodology for a given year. A frequent mistake is to average these annual ELCC estimates. A main contribution of this paper is to explain why the system design criteria should take the worst of the annual ELCC estimates over a number of years and not an average of annual ELCC estimates. Based on extreme events, wind generation contributes little to system capacity (<6.6% of wind nameplate). The empirical evidence shows that wind generation is an energy source, not a capacity resource.


2019 ◽  
Vol 287 ◽  
pp. 02001 ◽  
Author(s):  
Johannes Koenig ◽  
Stefanie Hoja ◽  
Thomas Tobie ◽  
Franz Hoffmann ◽  
Karsten Stahl

Nitriding is a common heat treatment process for highly loaded gears. A very hard compound layer with a thickness of a few microns is produced at the surface of the gear. In the underlying material areas, a diffusion layer with nitride precipitations is formed. This publication summarizes the state of knowledge of nitrided gears and gives an overview of the current state of research in the field of nitrided gears. It can be concluded that a high load carrying capacity of nitrided gears is dependent on an adequate NHD and a stable compound layer. However, due to the increased surface roughness after nitriding, the risk of micropitting increases, too. Therefore, it may be favourable to grind the gears after nitriding. Ground gears also can provide a high load carrying capacity, but it must be taken into account that the wear performance will decrease significantly, since it is mainly influenced by the compound layer. In addition, nitrided gears usually show a high sensitivity against local load peaks. Beyond creating a stable compound the layer, the realization of a sufficient nitriding hardness depth with larger gear sizes is a focus in the current field of research.


2008 ◽  
Vol 130 (12) ◽  
Author(s):  
Sébastien Briot ◽  
Vigen Arakelian ◽  
Sylvain Guégan

In this paper, a new four degrees of freedom 3T1R parallel manipulator with high-load carrying capacity is presented. This manipulator generates Schönflies motions, in which the moving platform carries out three independent translations and one rotation about one axis of fixed orientation. The particularity of the proposed architecture is the decoupling of the displacements of the platform in the horizontal plane from the platform’s translation along the vertical axis. Such a decoupling allows the cancellation of the gravity loads on the actuators, which displace the platform in the horizontal plane. A prototype of the proposed manipulator with four degrees of freedom and an experimental validation of the suggested concept are also presented. Two cases have been examined on the built prototype: a manipulator with payload and one without. It was shown that the input torques of actuators displacing the platform in the horizontal plane for these two cases are the same; i.e., the payload does not bring any load to the actuators.


Sign in / Sign up

Export Citation Format

Share Document