scholarly journals On a Durrmeyer-type modification of the Exponential sampling series

Author(s):  
Carlo Bardaro ◽  
Ilaria Mantellini

Abstract In this paper we introduce the exponential sampling Durrmeyer series. We discuss pointwise and uniform convergence properties and an asymptotic formula of Voronovskaja type. Quantitative results are given, using the usual modulus of continuity for uniformly continuous functions. Some examples are also described.

2021 ◽  
Vol 0 (0) ◽  
pp. 0
Author(s):  
İsmail Aslan ◽  
Türkan Yeliz Gökçer

<p style='text-indent:20px;'>In this note, we construct a pseudo-linear kind discrete operator based on the continuous and nondecreasing generator function. Then, we obtain an approximation to uniformly continuous functions through this new operator. Furthermore, we calculate the error estimation of this approach with a modulus of continuity based on a generator function. The obtained results are supported by visualizing with an explicit example. Finally, we investigate the relation between discrete operators and generalized sampling series.</p>


2019 ◽  
pp. 1-26 ◽  
Author(s):  
Lucian Coroianu ◽  
Danilo Costarelli ◽  
Sorin G. Gal ◽  
Gianluca Vinti

In a recent paper, for max-product sampling operators based on general kernels with bounded generalized absolute moments, we have obtained several pointwise and uniform convergence properties on bounded intervals or on the whole real axis, including a Jackson-type estimate in terms of the first uniform modulus of continuity. In this paper, first, we prove that for the Kantorovich variants of these max-product sampling operators, under the same assumptions on the kernels, these convergence properties remain valid. Here, we also establish the [Formula: see text] convergence, and quantitative estimates with respect to the [Formula: see text] norm, [Formula: see text]-functionals and [Formula: see text]-modulus of continuity as well. The results are tested on several examples of kernels and possible extensions to higher dimensions are suggested.


1974 ◽  
Vol 11 (3) ◽  
pp. 413-424 ◽  
Author(s):  
R.J. Gazik ◽  
D.C. Kent ◽  
G.D. Richardson

A regular completion with universal property is obtained for each member of the class of u–embedded uniform convergence spaces, a class which includes the Hausdorff uniform spaces. This completion is obtained by embedding each u-embedded uniform convergence space (X, I) into the dual space of a complete function algebra composed of the uniformly continuous functions from (X, I) into the real line.


2021 ◽  
Vol 13 (3) ◽  
pp. 666-675
Author(s):  
S. Kurşun ◽  
M. Turgay ◽  
O. Alagöz ◽  
T. Acar

In this paper, we generalize the family of exponential sampling series for functions of $n$ variables and study their pointwise and uniform convergence as well as the rate of convergence for the functions belonging to space of $\log$-uniformly continuous functions. Furthermore, we state and prove the generalized Mellin-Taylor's expansion of multivariate functions. Using this expansion we establish pointwise asymptotic behaviour of the series by means of Voronovskaja type theorem.


1986 ◽  
Vol 29 (4) ◽  
pp. 463-468 ◽  
Author(s):  
Gerald Beer

AbstractLet 〈X, dx〉 and 〈Y, dY〉 be metric spaces and let hp denote Hausdorff distance in X x Y induced by the metric p on X x Y given by p[(x1, y1), (x2, y2)] = max ﹛dx(x1, x2),dY(y1, y2)﹜- Using the fact that hp when restricted to the uniformly continuous functions from X to Y induces the topology of uniform convergence, we exhibit a natural compactness criterion for C(X, Y) when X is compact and Y is complete.


2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Heping Wang ◽  
Fagui Pu ◽  
Kai Wang

We introduce aq-generalization of Szász-Mirakjan operatorsSn,qand discuss their properties for fixedq∈(0,1). We show that theq-Szász-Mirakjan operatorsSn,qhave good shape-preserving properties. For example,Sn,qare variation-diminishing, and preserve monotonicity, convexity, and concave modulus of continuity. For fixedq∈(0,1), we prove that the sequence{Sn,qf}converges toB∞,q(f)uniformly on[0,1]for eachf∈C[0, 1/(1-q)], whereB∞,qis the limitq-Bernstein operator. We obtain the estimates for the rate of convergence for{Sn,qf}by the modulus of continuity off, and the estimates are sharp in the sense of order for Lipschitz continuous functions.


2014 ◽  
Vol 2014 ◽  
pp. 1-6 ◽  
Author(s):  
Heping Wang ◽  
Yanbo Zhang

We discuss the rate of convergence of the Lupasq-analogues of the Bernstein operatorsRn,q(f;x)which were given by Lupas in 1987. We obtain the estimates for the rate of convergence ofRn,q(f)by the modulus of continuity off, and show that the estimates are sharp in the sense of order for Lipschitz continuous functions.


2013 ◽  
Vol 160 (1) ◽  
pp. 50-55 ◽  
Author(s):  
Félix Cabello Sánchez ◽  
Javier Cabello Sánchez

2021 ◽  
Vol 1 ◽  
pp. 76-83
Author(s):  
Yuri I. Kharkevich ◽  
◽  
Alexander G. Khanin ◽  

The paper deals with topical issues of the modern applied mathematics, in particular, an investigation of approximative properties of Abel–Poisson-type operators on the so-called generalized Hölder’s function classes. It is known, that by the generalized Hölder’s function classes we mean the classes of continuous -periodic functions determined by a first-order modulus of continuity. The notion of the modulus of continuity, in turn, was formulated in the papers of famous French mathematician Lebesgue in the beginning of the last century, and since then it belongs to the most important characteristics of smoothness for continuous functions, which can describe all natural processes in mathematical modeling. At the same time, the Abel-Poisson-type operators themselves are the solutions of elliptic-type partial differential equations. That is why the results obtained in this paper are significant for subsequent research in the field of applied mathematics. The theorem proved in this paper characterizes the upper bound of deviation of continuous -periodic functions determined by a first-order modulus of continuity from their Abel–Poisson-type operators. Hence, the classical Kolmogorov–Nikol’skii problem in A.I. Stepanets sense is solved on the approximation of functions from the classes by their Abel–Poisson-type operators. We know, that the Abel–Poisson-type operators, in partial cases, turn to the well-known in applied mathematics Poisson and Jacobi–Weierstrass operators. Therefore, from the obtained theorem follow the asymptotic equalities for the upper bounds of deviation of functions from the Hölder’s classes of order from their Poisson and Jacobi–Weierstrass operators, respectively. The obtained equalities generalize the known in this direction results from the field of applied mathematics.


Sign in / Sign up

Export Citation Format

Share Document