Characterization of N2O emissions and associated microbial communities from the ant mounds in soils of a humid tropical rainforest

2017 ◽  
Vol 63 (3) ◽  
pp. 381-389
Author(s):  
M. Z. Majeed ◽  
E. Miambi ◽  
I. Barois ◽  
M. Bernoux ◽  
A. Brauman
2016 ◽  
Vol 2 (5) ◽  
pp. 563-566.e5 ◽  
Author(s):  
Chandra Sekhar Pedamallu ◽  
Ami S. Bhatt ◽  
Susan Bullman ◽  
Sharyle Fowler ◽  
Samuel S. Freeman ◽  
...  

Pathogens ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 405
Author(s):  
Anna Matysiak ◽  
Michal Kabza ◽  
Justyna A. Karolak ◽  
Marcelina M. Jaworska ◽  
Malgorzata Rydzanicz ◽  
...  

The ocular microbiome composition has only been partially characterized. Here, we used RNA-sequencing (RNA-Seq) data to assess microbial diversity in human corneal tissue. Additionally, conjunctival swab samples were examined to characterize ocular surface microbiota. Short RNA-Seq reads, obtained from a previous transcriptome study of 50 corneal tissues, were mapped to the human reference genome GRCh38 to remove sequences of human origin. The unmapped reads were then used for taxonomic classification by comparing them with known bacterial, archaeal, and viral sequences from public databases. The components of microbial communities were identified and characterized using both conventional microbiology and polymerase chain reaction (PCR) techniques in 36 conjunctival swabs. The majority of ocular samples examined by conventional and molecular techniques showed very similar microbial taxonomic profiles, with most of the microorganisms being classified into Proteobacteria, Firmicutes, and Actinobacteria phyla. Only 50% of conjunctival samples exhibited bacterial growth. The PCR detection provided a broader overview of positive results for conjunctival materials. The RNA-Seq assessment revealed significant variability of the corneal microbial communities, including fastidious bacteria and viruses. The use of the combined techniques allowed for a comprehensive characterization of the eye microbiome’s elements, especially in aspects of microbiota diversity.


Geobiology ◽  
2007 ◽  
Vol 5 (4) ◽  
pp. 423-433 ◽  
Author(s):  
S. SHIMIZU ◽  
M. AKIYAMA ◽  
T. NAGANUMA ◽  
M. FUJIOKA ◽  
M. NAKO ◽  
...  

2013 ◽  
Vol 160 (3) ◽  
pp. 313-322 ◽  
Author(s):  
Birgit Jensen ◽  
Inge M.B. Knudsen ◽  
Birgitte Andersen ◽  
Kristian Fog Nielsen ◽  
Ulf Thrane ◽  
...  

2018 ◽  
Vol 17 (1) ◽  
pp. 37-49 ◽  
Author(s):  
Abdolrazagh Hashemi Shahraki ◽  
Subba Rao Chaganti ◽  
Daniel Heath

Abstract The characterization of microbial community dynamics using genomic methods is rapidly expanding, impacting many fields including medical, ecological, and environmental research and applications. One of the biggest challenges for such studies is the isolation of environmental DNA (eDNA) from a variety of samples, diverse microbes, and widely variable community compositions. The current study developed environmentally friendly, user safe, economical, and high throughput eDNA extraction methods for mixed aquatic microbial communities and tested them using 16 s rRNA gene meta-barcoding. Five different lysis buffers including (1) cetyltrimethylammonium bromide (CTAB), (2) digestion buffer (DB), (3) guanidinium isothiocyanate (GITC), (4) sucrose lysis (SL), and (5) SL-CTAB, coupled with four different purification methods: (1) phenol-chloroform-isoamyl alcohol (PCI), (2) magnetic Bead-Robotic, (3) magnetic Bead-Manual, and (4) membrane-filtration were tested for their efficacy in extracting eDNA from recreational freshwater samples. Results indicated that the CTAB-PCI and SL-Bead-Robotic methods yielded the highest genomic eDNA concentrations and succeeded in detecting the core microbial community including the rare microbes. However, our study recommends the SL-Bead-Robotic eDNA extraction protocol because this method is safe, environmentally friendly, rapid, high-throughput and inexpensive.


Author(s):  
Ye Chen ◽  
Siqi Li ◽  
Xiaoqing Xu ◽  
Manman Ma ◽  
Tiezhu Mi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document