Diel Variability and Influence of Artificial Light on Fish and Macroinvertebrate Communities in Gulf of Mexico Seagrass Beds

Author(s):  
Charles W. Martin ◽  
Laura K. Reynolds ◽  
Whitney A. Scheffel ◽  
Samantha Tiffany ◽  
Sara Kopetman
2018 ◽  
Author(s):  
Shannon D Whaley ◽  
James J Burd ◽  
Craig W. Harmak ◽  
Colin P Shea

Understanding trophodynamics of estuarine and marine ecosystems is important in developing food-web models prevalent in ecosystem-based approaches to fisheries management, as well as assessing ecosystem condition and function. Few studies have examined seasonal and spatial trophodynamics of nekton assemblages in shallow subtropical waters on estuary-wide spatial extent. We used fisheries-independent monitoring data to examine the spatial distribution and seasonal trophodynamics of nekton assemblages in shallow waters (≤ 1.5m) of Charlotte Harbor, Florida, USA, as well as the lower Peace and Myakka Rivers. Overall nekton densities were generally high in spring (April - May), especially in the lower rivers, and declined through the summer (June – October), and fall (November – December), with small increases in mean nekton densities in winter (January – March). We found that species composition as well as trophic structure of nekton assemblages changed along a broad spatial gradient from the lower portions of the Peace and Myakka Rivers to lower Charlotte Harbor near the passes to the Gulf of Mexico. Nekton assemblages dominated by planktonic-feeding species were located in lower Peace and Myakka Rivers and extended into upper Charlotte Harbor in apparent response to seasonal fluctuations in freshwater inflow. In contrast, most of the nekton assemblages within Charlotte Harbor proper were dominated by nekton species feeding within the benthos (those feeding on benthic infauna, epifauna, seagrass, and/or detritus) throughout the year. The proportion of benthic feeders was positively correlated with landscape metrics describing the area of continuous seagrass beds mapped from aerial photography, and negatively correlated with distance to the nearest pass to the Gulf of Mexico. These relationships were consistent throughout all four seasons of the year. The proportion of benthic feeders varied seasonally, and was relatively high in the fall and winter compared with the spring and summer. The predominance of benthic feeding species during fall and winter when overall nekton densities were low, suggests that benthic production is an important in supporting populations of forage fishes for higher trophic levels, such as piscivorous fishes and wading birds during this time of year. This is an important time for overwintering wading birds, as well as several economically-important fishery species who are recruiting into shallow water areas of Charlotte Harbor. Planktonic production is often the focus of food-web models with benthic production sometimes not included. We found both planktonic and benthic production to be important in Charlotte Harbor. Therefore, both sources of production need to be included in food-web models for Charlotte Harbor, as well as similar subtropical estuaries with relatively large areas of seagrass beds.


2018 ◽  
Author(s):  
Shannon D Whaley ◽  
James J Burd ◽  
Craig W. Harmak ◽  
Colin P Shea

Understanding trophodynamics of estuarine and marine ecosystems is important in developing food-web models prevalent in ecosystem-based approaches to fisheries management, as well as assessing ecosystem condition and function. Few studies have examined seasonal and spatial trophodynamics of nekton assemblages in shallow subtropical waters on estuary-wide spatial extent. We used fisheries-independent monitoring data to examine the spatial distribution and seasonal trophodynamics of nekton assemblages in shallow waters (≤ 1.5m) of Charlotte Harbor, Florida, USA, as well as the lower Peace and Myakka Rivers. Overall nekton densities were generally high in spring (April - May), especially in the lower rivers, and declined through the summer (June – October), and fall (November – December), with small increases in mean nekton densities in winter (January – March). We found that species composition as well as trophic structure of nekton assemblages changed along a broad spatial gradient from the lower portions of the Peace and Myakka Rivers to lower Charlotte Harbor near the passes to the Gulf of Mexico. Nekton assemblages dominated by planktonic-feeding species were located in lower Peace and Myakka Rivers and extended into upper Charlotte Harbor in apparent response to seasonal fluctuations in freshwater inflow. In contrast, most of the nekton assemblages within Charlotte Harbor proper were dominated by nekton species feeding within the benthos (those feeding on benthic infauna, epifauna, seagrass, and/or detritus) throughout the year. The proportion of benthic feeders was positively correlated with landscape metrics describing the area of continuous seagrass beds mapped from aerial photography, and negatively correlated with distance to the nearest pass to the Gulf of Mexico. These relationships were consistent throughout all four seasons of the year. The proportion of benthic feeders varied seasonally, and was relatively high in the fall and winter compared with the spring and summer. The predominance of benthic feeding species during fall and winter when overall nekton densities were low, suggests that benthic production is an important in supporting populations of forage fishes for higher trophic levels, such as piscivorous fishes and wading birds during this time of year. This is an important time for overwintering wading birds, as well as several economically-important fishery species who are recruiting into shallow water areas of Charlotte Harbor. Planktonic production is often the focus of food-web models with benthic production sometimes not included. We found both planktonic and benthic production to be important in Charlotte Harbor. Therefore, both sources of production need to be included in food-web models for Charlotte Harbor, as well as similar subtropical estuaries with relatively large areas of seagrass beds.


2021 ◽  
Author(s):  
Natalia Yingling ◽  
Thomas B. Kelly ◽  
Taylor A. Shropshire ◽  
Michael R. Landry ◽  
Karen E. Selph ◽  
...  

ABSTRACTThe highly stratified, oligotrophic regions of the oceans are predominantly nitrogen limited in the surface ocean and light limited at the deep chlorophyll maximum (DCM). Hence, determining light and nitrogen co-limitation patterns for diverse phytoplankton taxa is crucial to understanding marine primary production throughout the euphotic zone. During two cruises in the deep-water Gulf of Mexico, we measured primary productivity (H13CO3−), nitrate uptake (15NO3−), and ammonium uptake (15NH4+) throughout the water column. Primary productivity declined with depth from the mixed-layer to the DCM, averaging 27.1 mmol C m−2 d−1. The fraction of growth supported by NO3− was consistently low, with upper euphotic zone values ranging from 0.01 to 0.14 and lower euphotic zone values ranging from 0.03 to 0.44. Nitrate uptake showed strong diel patterns (maximum during the day), while ammonium uptake exhibited no diel variability. To parameterize taxon-specific phytoplankton nutrient and light utilization, we used a data assimilation approach (Bayesian Markov Chain Monte Carlo) including primary productivity, nutrient uptake, and taxon-specific growth rate measurements. Parameters derived from this analysis define distinct niches for five phytoplankton taxa (Prochlorococcus, Synechococcus, diatoms, dinoflagellates, and prymnesiophytes) and may be useful for constraining biogeochemical models of oligotrophic open-ocean systems.


2015 ◽  
Vol 144 (5) ◽  
pp. 911-926 ◽  
Author(s):  
Kerry E. Flaherty-Walia ◽  
Theodore S. Switzer ◽  
Brent L. Winner ◽  
Amanda J. Tyler-Jedlund ◽  
Sean F. Keenan

ZooKeys ◽  
2019 ◽  
Vol 843 ◽  
pp. 71-115 ◽  
Author(s):  
D. Ross Robertson ◽  
Omar Domínguez-Dominguez ◽  
Yareli Margarita López Aroyo ◽  
Rigoberto Moreno Mendoza ◽  
Nuno Simões

A series of small emergent coral reefs and shallow, submerged coralliferous banks are scattered along the western edge of Campeche Bank (southwest Gulf of Mexico), 150–200 km offshore from the Yucatán Peninsula, Mexico. Here a reasonably comprehensive, annotated checklist of reef-associated fishes for one reef, Cayo Arcas (expanded from 162 to 209 species) is presented, with preliminary checklists of such fishes from three other emergent reefs (Cayo Arenas, Triángulo Oeste, Triángulo Este) and four submerged bank reefs (Banco Obispo Norte, Banco Obispo Sur, Banco Nuevo and Banco Pera). During 2017–18 a total of 260 species was observed or collected from those reefs, and previous studies and georeferenced museum records in the global aggregator Fishnet2 added another 101 shallow-living species recorded on or adjacent to those reefs. Some coral-reef fishes are thought to be strongly dependent on seagrass and mangrove areas as nursery habitats for maintenance of their local populations on reefs near to those habitats. The abundance of a number of such “nursery” species on these Campeche reefs indicates otherwise, as there are no seagrass- or mangrove habitats for reef fishes within ~ 150 km of the study reefs. Other isolated Caribbean-area reefs that lack mangroves and, in some cases, seagrasses, also support many such nursery species of reef-fishes.


Sign in / Sign up

Export Citation Format

Share Document