A Gel-Free Reservoir System for Once-a-Day Ophthalmic Delivery of Timolol Maleate

Author(s):  
Arindam Halder ◽  
Malay D. Shah ◽  
Bharat Pateliya ◽  
Vinod Burade ◽  
Ajay J. Khopade
Polymers ◽  
2022 ◽  
Vol 14 (2) ◽  
pp. 248
Author(s):  
Nicole Mortensen ◽  
Parker Toews ◽  
Jeffrey Bates

Drug-diffusion kinetics in 2-hydroxyethyl methacrylate hydrogels were studied as a function of the crosslinking density and porosity. By varying the concentration of the crosslinker, tetraethylene glycol dimethacrylate, we demonstrated how the release of Timolol maleate could be optimized to allow for efficient drug delivery. FTIR and spectrophotometry supplied optical inferences into the functional groups present. By studying the swelling and degradation of hydrogels, supplemented with drug-release kinetics studies, the relationship between these two tenets could be formulated.


2020 ◽  
Vol 13 (4) ◽  
pp. 291-300 ◽  
Author(s):  
Srividya Gorantla ◽  
Tejashree Waghule ◽  
Vamshi Krishna Rapalli ◽  
Prem Prakash Singh ◽  
Sunil Kumar Dubey ◽  
...  

Hydrogels are aqueous gels composed of cross-linked networks of hydrophilic polymers. Stimuli-responsive based hydrogels have gained focus over the past 20 years for treating ophthalmic diseases. Different stimuli-responsive mechanisms are involved in forming polymer hydrogel networks, including change in temperature, pH, ions, and others including light, thrombin, pressure, antigen, and glucose-responsive. Incorporation of nanocarriers with these smart stimuli-responsive drug delivery systems that can extend the duration of action by increasing ocular bioavailability and reducing the dosing frequency. This review will focus on the hydrogel drug delivery systems highlighting the gelling mechanisms and emerging stimuli-responsive hydrogels from preformed gels, nanogels, and the role of advanced 3D printed hydrogels in vision-threatening diseases like age-related macular degeneration and retinitis pigmentosa. It also provides insight into the limitations of hydrogels along with the safety and biocompatibility of the hydrogel drug delivery systems.


2020 ◽  
Vol 66 (11) ◽  
pp. 2583-2596
Author(s):  
Nariane Bernardo ◽  
Alisson Carmo ◽  
Luiz Rotta ◽  
Enner Alcântara

Pharmaceutics ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 444
Author(s):  
Alaa Mahran ◽  
Sayed Ismail ◽  
Ayat A. Allam

Treatment of uveitis (i.e., inflammation of the uvea) is challenging due to lack of convenient ophthalmic dosage forms. This work is aimed to determine the efficiency of triamcinolone acetonide (TA)-loaded microemulsion as an ophthalmic delivery system for the treatment of uveitis. Water titration method was used to construct different pseudo-ternary phase diagrams. Twelve microemulsion formulations were prepared using oleic acid, Cremophor EL, and propylene glycol. Among all tested formulations, Formulation F3, composed of oil: surfactant-co-surfactant (1:1): water (15:35:50% w/w, respectively), was found to be stable and showed acceptable pH, viscosity, conductivity, droplet size (211 ± 1.4 nm), and zeta potential (−25 ± 1.7 mV) and almost complete in vitro drug release within 24 h. The in vivo performance of the optimized formulation was evaluated in experimentally uveitis-induced rabbit model and compared with a commercial TA suspension (i.e., Kenacort®-A) either topically or by subconjunctival injection. Ocular inflammation was evaluated by clinical examination, white blood cell count, protein content measurement, and histopathological examination. The developed TA-loaded microemulsion showed superior therapeutic efficiency in the treatment of uveitis with high patient compliance compared to commercial suspension. Hence, it could be considered as a potential ocular treatment option in controlling of uveitis.


Sign in / Sign up

Export Citation Format

Share Document