scholarly journals Vasopressin-vermittelte Wasserrückresorption im Sammelrohr der Niere

BIOspektrum ◽  
2021 ◽  
Vol 27 (2) ◽  
pp. 165-167
Author(s):  
Sandrine Baltzer ◽  
Enno Klussmann

AbstractVasopressin-mediated water reabsorption from primary urine in the renal collecting duct is essential for regulating body water homeostasis and depends on the water channel aquaporin-2 (AQP2).Dysregulation of the process can cause water balance disorders. Here, we present cell-based high-throughput screenings to identify proteins and small molecules as tools to elucidate molecular mechanisms underlying the AQP2 control and as potential starting points for the development of water balance disorder drugs.

1999 ◽  
Vol 10 (3) ◽  
pp. 647-663
Author(s):  
SØREN NIELSEN ◽  
TAE-HWAN KWON ◽  
BIRGITTE MØNSTER CHRISTENSEN ◽  
DOMINIQUE PROMENEUR ◽  
JØRGEN FRØKIÆR ◽  
...  

Abstract. The discovery of aquaporin membrane water channels by Agre and coworkers answered a long-standing biophysical question of how water specifically crosses biologic membranes, and provided insight, at the molecular level, into the fundamental physiology of water balance and the pathophysiology of water balance disorders. Of nine aquaporin isoforms, at least six are known to be present in the kidney at distinct sites along the nephron and collecting duct. Aquaporin-1 (AQP1) is extremely abundant in the proximal tubule and descending thin limb, where it appears to provide the chief route for proximal nephron water reabsorption. AQP2 is abundant in the collecting duct principal cells and is the chief target for vasopressin to regulate collecting duct water reabsorption. Acute regulation involves vasopressin-regulated trafficking of AQP2 between an intracellular reservoir and the apical plasma membrane. In addition, AQP2 is involved in chronic/adaptational regulation of body water balance achieved through regulation of AQP2 expression. Importantly, multiple studies have now identified a critical role of AQP2 in several inherited and acquired water balance disorders. This concerns inherited forms of nephrogenic diabetes insipidus and several, much more common acquired types of nephrogenic diabetes insipidus where AQP2 expression and/or targeting are affected. Conversely, AQP2 expression and targeting appear to be increased in some conditions with water retention such as pregnancy and congestive heart failure. AQP3 and AQP4 are basolateral water channels located in the kidney collecting duct, and AQP6 and AQP7 appear to be expressed at lower abundance at several sites including the proximal tubule. This review focuses mainly on the role of AQP2 in water balance regulation and in the pathophysiology of water balance disorders.


2020 ◽  
Vol 318 (4) ◽  
pp. F956-F970 ◽  
Author(s):  
Wei-Ling Wang ◽  
Shih-Han Su ◽  
Kit Yee Wong ◽  
Chan-Wei Yang ◽  
Chin-Fu Liu ◽  
...  

Aquaporin-2 (AQP2) is a vasopressin-regulated water channel protein responsible for osmotic water reabsorption by kidney collecting ducts. In response to vasopressin, AQP2 traffics from intracellular vesicles to the apical plasma membrane of collecting duct principal cells, where it increases water permeability and, hence, water reabsorption. Despite continuing efforts, gaps remain in our knowledge of vasopressin-regulated AQP2 trafficking. Here, we studied the functions of two retromer complex proteins, small GTPase Rab7 and vacuolar protein sorting 35 (Vps35), in vasopressin-induced AQP2 trafficking in a collecting duct cell model (mpkCCD cells). We showed that upon vasopressin removal, apical AQP2 returned to Rab5-positive early endosomes before joining Rab11-positive recycling endosomes. In response to vasopressin, Rab11-associated AQP2 trafficked to the apical plasma membrane before Rab5-associated AQP2 did so. Rab7 knockdown resulted in AQP2 accumulation in early endosomes and impaired vasopressin-induced apical AQP2 trafficking. In response to vasopressin, Rab7 transiently colocalized with Rab5, indicative of a role of Rab7 in AQP2 sorting in early endosomes before trafficking to the apical membrane. Rab7-mediated apical AQP2 trafficking in response to vasopressin required GTPase activity. When Vps35 was knocked down, AQP2 accumulated in recycling endosomes under vehicle conditions and did not traffic to the apical plasma membrane in response to vasopressin. We conclude that Rab7 and Vps35 participate in AQP2 sorting in early endosomes under vehicle conditions and apical membrane trafficking in response to vasopressin.


Cells ◽  
2019 ◽  
Vol 8 (3) ◽  
pp. 265 ◽  
Author(s):  
Sathish Murali ◽  
Takwa Aroankins ◽  
Hanne Moeller ◽  
Robert Fenton

Aquaporin 2 (AQP2) mediates the osmotic water permeability of the kidney collecting duct in response to arginine vasopressin (VP) and is essential for body water homeostasis. VP effects on AQP2 occur via long-term alterations in AQP2 abundance and short-term changes in AQP2 localization. Several of the effects of VP on AQP2 are dependent on AQP2 phosphorylation and ubiquitylation; post-translational modifications (PTM) that modulate AQP2 subcellular distribution and function. Although several protein kinases, phosphatases, and ubiquitin E3 ligases have been implicated in AQP2 PTM, how AQP2 is deubiquitylated or the role of deubiquitylases (DUBS) in AQP2 function is unknown. Here, we report a novel role of the ubiquitin-specific protease USP4 in modulating AQP2 function. USP4 co-localized with AQP2 in the mouse kidney, and in mpkCCD14 cells USP4 and AQP2 abundance are increased by VP. AQP2 and USP4 co-immunoprecipitated from mpkCCD14 cells and mouse kidney, and in vitro, USP4 can deubiquitylate AQP2. In mpkCCD14 cells, shRNA mediated knockdown of USP4 decreased AQP2 protein abundance, whereas no changes in AQP2 mRNA levels or VP-induced cAMP production were detected. VP-induced AQP2 membrane accumulation in knockdown cells was significantly reduced, which was associated with higher levels of ubiquitylated AQP2. AQP2 protein half-life was also significantly reduced in USP4 knockdown cells. Taken together, the data suggest that USP4 is a key regulator of AQP2 deubiquitylation and that loss of USP4 leads to increased AQP2 ubiquitylation, decreased AQP2 levels, and decreased cell surface AQP2 accumulation upon VP treatment. These studies have implications for understanding body water homeostasis.


2020 ◽  
Vol 319 (1) ◽  
pp. C1-C10 ◽  
Author(s):  
Robert A. Fenton ◽  
Sathish K. Murali ◽  
Hanne B. Moeller

In mammals, conservation of body water is critical for survival and is dependent on the kidneys’ ability to minimize water loss in the urine during periods of water deprivation. The collecting duct water channel aquaporin-2 (AQP2) plays an essential role in this homeostatic response by facilitating water reabsorption along osmotic gradients. The ability to increase the levels of AQP2 in the apical plasma membrane following an increase in plasma osmolality is a rate-limiting step in water reabsorption, a process that is tightly regulated by the antidiuretic hormone arginine vasopressin (AVP). In this review, the focus is on the role of the carboxyl-terminus of AQP2 as a key regulatory point for AQP2 trafficking. We provide an overview of AQP2 structure, disease-causing mutations in the AQP2 carboxyl-terminus, the role of posttranslational modifications such as phosphorylation and ubiquitylation in the tail domain, and their implications for balanced trafficking of AQP2. Finally, we discuss how various modifications of the AQP2 tail facilitate selective protein-protein interactions that modulate the AQP2 trafficking mechanism.


2018 ◽  
Vol 50 (9) ◽  
pp. 669-679 ◽  
Author(s):  
Kelly A. Hyndman ◽  
Chin-Rang Yang ◽  
Hyun Jun Jung ◽  
Ezigbobiara N. Umejiego ◽  
Chung-Ling Chou ◽  
...  

Phosphorylation and lysine (K)-acetylation are dynamic posttranslational modifications of proteins. Previous proteomic studies have identified over 170,000 phosphorylation sites and 15,000 K-acetylation sites in mammals. We recently reported that the inner medullary collecting duct (IMCD), which functions in the regulation of water-reabsorption, via the actions of vasopressin, expresses many of the enzymes that can modulated K-acetylation. The purpose of this study was to determine the K-acetylated or phosphorylated proteins expressed in IMCD cells. Second we questioned whether vasopressin V2 receptor activation significantly affects the IMCD acetylome or phosphoproteome? K-acetylated or serine-, threonine-, or tyrosine-phosphorylated peptides were identified from native rat IMCDs by proteomic analysis with four different enzymes (trypsin, chymotrypsin, ASP-N, or Glu-C) to generate a high-resolution proteome. K-acetylation was identified in 431 unique proteins, and 64% of the K-acetylated sites were novel. The acetylated proteins were expressed in all compartments of the cell and were enriched in pathways including glycolysis and vasopressin-regulated water reabsorption. In the vasopressin-regulated water reabsorption pathway, eight proteins were acetylated, including the novel identification of the basolateral water channel, AQP3, acetylated at K282; 215 proteins were phosphorylated in this IMCD cohort, including AQP2 peptides that were phosphorylated at four serines: 256, 261, 264, and 269. Acute dDAVP did not significantly affect the IMCD acetylome; however, it did significantly affect previously known vasopressin-regulated phosphorylation sites. In conclusion, presence of K-acetylated proteins involved in metabolism, ion, and water transport in the IMCD points to multiple roles of K-acetylation beyond its canonical role in transcriptional regulation.


2000 ◽  
Vol 278 (2) ◽  
pp. F246-F256 ◽  
Author(s):  
Thomas E. N. Jonassen ◽  
Dominique Promeneur ◽  
Sten Christensen ◽  
Jørgen S. Petersen ◽  
Søren Nielsen

Previous studies have suggested that mineralocorticoids are needed for a normal action of vasopressin on collecting duct osmotic water permeability. However, the mechanisms behind this are unknown. To investigate if aldosterone-receptor blockade influences vasopressin type 2 receptor (V2)-mediated renal water reabsorption and the renal expression of the vasopressin-regulated water channel aquaporin-2 (AQP2), rats were treated with the aldosterone-receptor antagonist canrenoate (20 mg/day iv) for 4 wk. Daily urine flow was increased significantly by 44%, and urine osmolality was decreased by 27% in canrenoate-treated rats. Acute V2-receptor blockade (OPC-31260, 800 μg ⋅ kg−1 ⋅ h−1) was performed under conditions in which volume depletion was prevented. In control rats, OPC-31260 induced a significant increase in urine flow rate (V, +25%) and free water clearance ([Formula: see text], −29%). In canrenoate-treated rats, the effect of OPC-31260 was significantly reduced, and semiquantiative immunoblotting demonstrated a significant reduction (45%) in AQP2 expression. Because rats with common bile duct ligation (CBL) have a reduced vasopressin-mediated water reabsorption compared with normal rats (V: −24%;[Formula: see text]: −28%, and 86% downregulation of AQP2), the effect of canrenoate combined with OPC-31260 was tested. Canrenoate treatment of CBL rats significantly increased daily urine flow, decreased urine osmolality, and impaired the aquaretic response to OPC-31260 (V: −23%;[Formula: see text]: −31%) with maintained suppression of the renal AQP2 expression. Thus canrenoate treatment of normal and CBL rats showed 1) increased urine production, 2) reduced aquaretic effect of acute V2-receptor blockade, and 3) a marked reduction in AQP2 expression. This strongly supports the view that aldosterone plays a significant role for vasopressin-mediated water reabsorption.


2004 ◽  
Vol 287 (5) ◽  
pp. C1292-C1299 ◽  
Author(s):  
Teresa M. Buck ◽  
Joel Eledge ◽  
William R. Skach

Aquaporin-2 (AQP2) is the vasopressin-sensitive water channel that regulates water reabsorption in the distal nephron collecting duct. Inherited AQP2 mutations that disrupt folding lead to nephrogenic diabetes insipidus (NDI) by targeting newly synthesized protein for degradation in the endoplasmic reticulum (ER). During synthesis, a subset of wild-type (WT) AQP2 is covalently modified by N-linked glycosylation at residue Asn123. To investigate the affect of glycosylation, we expressed WT AQP2 and four NDI-related mutants in Xenopus laevis oocytes and compared stability of glycosylated and nonglycosylated isoforms. In all constructs, ∼15–20% of newly synthesized AQP2 was covalently modified by N-linked glycosylation. At steady state, however, core glycosylated WT protein was nearly undetectable, whereas all mutants were found predominantly in the glycosylated form (60–70%). Pulse-chase metabolic labeling studies revealed that glycosylated isoforms of mutant AQP2 were significantly more stable than their nonglycosylated counterparts. For nonglycosylated isoforms, the half-life of WT AQP2 was significantly greater (>48 h) than that of mutant AQP2 (T126M 4.1 ± 1.0 h, A147T 4.2 ± 0.60 h, C181W 4.5 ± 0.50 h, R187C 6.8 ± 1.2 h). This is consistent with rapid turnover in the ER as previously reported. In contrast, the half-lives of mutant proteins containing N-linked glycans were similar to WT (∼25 h), indicating that differences in steady-state glycosylation profiles are caused by increased stability of glycosylated mutant proteins. These results suggest that addition of a single N-linked oligosaccharide moiety can partially compensate for ER folding defects induced by disease-related mutations.


2000 ◽  
Vol 279 (6) ◽  
pp. F1101-F1109 ◽  
Author(s):  
Thomas E. N. Jonassen ◽  
Sten Christensen ◽  
Tae-Hwan Kwon ◽  
Susanna Langhoff ◽  
Nanna Salling ◽  
...  

The present study was performed to investigate the renal handling of water in rats with decompensated liver cirrhosis. Liver cirrhosis was induced by intraperitoneal administration of carbon tetrachloride twice weekly for 16 wk. Control rats were treated with vehicle. The cirrhotic rats developed severe disturbances in water homeostasis: urine production was decreased and hyperosmotic, the rats had significantly decreased plasma sodium concentration and ascites, and the ability to excrete an intravenous water load was significantly impaired. Plasma concentrations of vasopressin and aldosterone were increased. Mean arterial pressure, glomerular filtration rate (GFR), and fractional lithium excretion were decreased. Acute vasopressin type 2-receptor blockade with the selective nonpeptide antagonist OPC-31260 (800 μg · kg−1 · h−1) was performed during conditions whereby volume depletion was prevented by computer-driven, servo-controlled intravenous volume replacement with 150 mM glucose. The aquaretic response to OPC-31260 was similar in cirrhotic and control rats. However, the OPC 31260-induced rises in fractional water excretion (ΔV/GFR; +24%) and fractional distal water excretion (ΔV/CLi; +46%) were significantly increased in the cirrhotic rats, where V is flow rate and Δ is change. This suggests that vasopressin-mediated renal water reabsorption capacity was increased in the cirrhotic rats. Semiquantitative immunoblotting revealed that the expression of the vasopressin-regulated water channel aquaporin-2 was unchanged in membrane fractions of both whole kidney and inner medulla from cirrhotic rats. Together, these results suggest a relative escape from vasopressin on collecting duct water reabsorption in rats with decompensated liver cirrhosis.


2010 ◽  
Vol 298 (2) ◽  
pp. F266-F278 ◽  
Author(s):  
G. Procino ◽  
C. Barbieri ◽  
M. Carmosino ◽  
F. Rizzo ◽  
G. Valenti ◽  
...  

Vasopressin causes the redistribution of the water channel aquaporin-2 (AQP2) from cytoplasmic storage vesicles to the apical plasma membrane of collecting duct principal cells, leading to urine concentration. The molecular mechanisms regulating the selective apical sorting of AQP2 are only partially uncovered. In this work, we investigate whether AQP2 sorting/trafficking is regulated by its association with membrane rafts. In both MCD4 cells and rat kidney, AQP2 preferentially associated with Lubrol WX-insoluble membranes regardless of its presence in the storage compartment or at the apical membrane. Block-and-release experiments indicate that 1) AQP2 associates with detergent-resistant membranes early in the biosynthetic pathway; 2) strong cholesterol depletion delays the exit of AQP2 from the trans-Golgi network. Interestingly, mild cholesterol depletion promoted a dramatic accumulation of AQP2 at the apical plasma membrane in MCD4 cells in the absence of forskolin stimulation. An internalization assay showed that AQP2 endocytosis was clearly reduced under this experimental condition. Taken together, these data suggest that association with membrane rafts may regulate both AQP2 apical sorting and endocytosis.


2009 ◽  
Vol 43 (3) ◽  
pp. 81-92 ◽  
Author(s):  
Carrie Y Y Cheng ◽  
Jessica Y S Chu ◽  
Billy K C Chow

The maintenance of body water homeostasis depends on the balance between water intake and water excretion. In the kidney, vasopressin (Vp) is a critical regulator of water homeostasis by controlling the insertion of aquaporin 2 (AQP2) onto the apical membrane of the collecting duct principal cells in the short term and regulating the gene expression of AQP2 in the long term. A growing body of evidence from both in vitro and in vivo studies demonstrated that both secretin and oxytocin are involved as Vp-independent mechanisms regulating the renal water reabsorption process, including the translocation and expression of AQP2. This review focuses on how these two hormones are potentially involved as Vp-independent mechanisms in controlling water homeostasis.


Sign in / Sign up

Export Citation Format

Share Document