Influence of household air-conditioning use modes on the energy performance of residential district cooling systems

2016 ◽  
Vol 9 (4) ◽  
pp. 429-441 ◽  
Author(s):  
Xin Zhou ◽  
Da Yan ◽  
Xiaohang Feng ◽  
Guangwei Deng ◽  
Yiwen Jian ◽  
...  
Energies ◽  
2018 ◽  
Vol 11 (10) ◽  
pp. 2574 ◽  
Author(s):  
Ramadas Narayanan ◽  
Edward Halawa ◽  
Sanjeev Jain

Air conditioning accounts for up to 50% of energy use in buildings. Increased air-conditioning-system installations not only increase total energy consumption but also raise peak load demand. Desiccant evaporative cooling systems use low-grade thermal energy, such as solar energy and waste heat, instead of electricity to provide thermal comfort. This system can potentially lead to significant energy saving, reduction in carbon emissions, and it has a low dew-point operation and large capacity range. Their light weight, simplicity of design, and close-to-atmospheric operation make them easy to maintain. This paper evaluates the applicability of this technology to the climatic conditions of Brisbane, Queensland, Australia, specifically for the residential sector. Given the subtropical climate of Brisbane, where humidity levels are not excessively high during cooling periods, the numerical study shows that such a system can be a potential alternative to conventional compression-based air-conditioning systems. Nevertheless, the installation of such a system in Brisbane’s climate zone requires careful design, proper selection of components, and a cheap heat source for regeneration. The paper also discusses the economy-cycle options for this system in such a climate and compares its effectiveness to natural ventilation.


2005 ◽  
Vol 16 (4) ◽  
pp. 59-66 ◽  
Author(s):  
V Mittal ◽  
KS Kasana ◽  
NS Thakur

An air-conditioning system utilizing solar energy would generally be more efficient, cost wise, if it was used to provide both heating and cooling requirements in the building it serves. Various solar powered heating systems have been tested extensively, but solar powered air conditioning systems have received very little attention. Solar powered absorption cooling systems can serve both heating and cooling requirements in the building it serves. Many researchers have studied the solar absorption air conditioning system in order to make it economically and technically viable. But still, much more research in this area is needed. This paper will help many researchers working in this area and provide them with fundamental knowledge on absorption systems, and a detailed review on the past efforts in the field of solar absorption cooling systems with the absorption pair of lithium-bromide and water. This knowledge will help them to start the parametric study in order to investigate the influence of key parameters on the overall system performance.


2020 ◽  
Vol 10 (10) ◽  
pp. 3622 ◽  
Author(s):  
Adil Al-Falahi ◽  
Falah Alobaid ◽  
Bernd Epple

The electrical power consumption of refrigeration equipment leads to a significant influence on the supply network, especially on the hottest days during the cooling season (and this is besides the conventional electricity problem in Iraq). The aim of this work is to investigate the energy performance of a solar-driven air-conditioning system utilizing absorption technology under climate in Baghdad, Iraq. The solar fraction and the thermal performance of the solar air-conditioning system were analyzed for various months in the cooling season. It was found that the system operating in August shows the best monthly average solar fraction (of 59.4%) and coefficient of performance (COP) (of 0.52) due to the high solar potential in this month. Moreover, the seasonal integrated collector efficiency was 54%, providing a seasonal solar fraction of 58%, and the COP of the absorption chiller was 0.44, which was in limit, as reported in the literature for similar systems. A detailed parametric analysis was carried out to evaluate the thermal performance of the system and analyses, and the effect of design variables on the solar fraction of the system during the cooling season.


Author(s):  
N.N. Novikov ◽  

A method for calculating the parameters of the microclimate in a livestock building using water-evaporative air conditioning is described. It makes it possible to choose a rational temperature and humidity conditions for a room in hot weather, calculate the required air exchange, water evaporation rate and select the appropriate equipment.


2015 ◽  
Vol 13 (5) ◽  
Author(s):  
Noor Aziah Mohd Ariffin

In hot-humid Malaysia, there are around five million units of housing. Among these, the medium-density terraced are the most built. However, little emphasis was given to designing for thermal comfort and energy efficiency. Consequently, air-conditioning is ubiquitous with ever-rising residential energy consumption. This paper studied passive design systems to improve living conditions and conserve energy through orientation and insulation parameters for terraced housing. Utilizing a triangulation of methods to correlate between thermal comfort and energy performance, findings from the questionnaire survey, data monitoring and computer simulation contended that with the passive design strategies minimum thermal comfort is attainable and energy savings predicted.


2020 ◽  
Vol 59 (2) ◽  
pp. 707-738 ◽  
Author(s):  
Rasoul Nikbakhti ◽  
Xiaolin Wang ◽  
Ahmed Kadhim Hussein ◽  
Aghil Iranmanesh

Sign in / Sign up

Export Citation Format

Share Document