Experimental investigation of evaporative cooling systems for agricultural storage and livestock air-conditioning in Pakistan

Author(s):  
Hafiz M. U. Raza ◽  
Muhammad Sultan ◽  
Majid Bahrami ◽  
Alamgir A. Khan
Energies ◽  
2018 ◽  
Vol 11 (10) ◽  
pp. 2574 ◽  
Author(s):  
Ramadas Narayanan ◽  
Edward Halawa ◽  
Sanjeev Jain

Air conditioning accounts for up to 50% of energy use in buildings. Increased air-conditioning-system installations not only increase total energy consumption but also raise peak load demand. Desiccant evaporative cooling systems use low-grade thermal energy, such as solar energy and waste heat, instead of electricity to provide thermal comfort. This system can potentially lead to significant energy saving, reduction in carbon emissions, and it has a low dew-point operation and large capacity range. Their light weight, simplicity of design, and close-to-atmospheric operation make them easy to maintain. This paper evaluates the applicability of this technology to the climatic conditions of Brisbane, Queensland, Australia, specifically for the residential sector. Given the subtropical climate of Brisbane, where humidity levels are not excessively high during cooling periods, the numerical study shows that such a system can be a potential alternative to conventional compression-based air-conditioning systems. Nevertheless, the installation of such a system in Brisbane’s climate zone requires careful design, proper selection of components, and a cheap heat source for regeneration. The paper also discusses the economy-cycle options for this system in such a climate and compares its effectiveness to natural ventilation.


Author(s):  
N.N. Novikov ◽  

A method for calculating the parameters of the microclimate in a livestock building using water-evaporative air conditioning is described. It makes it possible to choose a rational temperature and humidity conditions for a room in hot weather, calculate the required air exchange, water evaporation rate and select the appropriate equipment.


Author(s):  
Wendell Concina ◽  
Suresh Sadineni ◽  
Robert Boehm

Evaporative cooling is among the most cost effective methods of air conditioning, but is less efficient in humid climates. An evaporative system coupled with a desiccant wheel can operate effectively in broader climatic conditions. These cooling systems can substitute traditional vapor compression air conditioning systems as they involve environmentally friendly cooling processes with reduced electricity demand (which is commonly generated from fossil fuels) along with no harmful CFC based refrigerant usage. Furthermore, direct utilization of low grade energy sources such as solar thermal energy or flue gas heat can drive the desiccant regeneration process, thus providing economic benefits. This study presents the results of simulations of desiccant cooling system performance for different climate zones of the United States. Solar assisted desiccant air conditioning is particularly useful where there are abundant solar resources with high temperature and humidity levels. Building energy simulations determined cooling energy requirements for the building. Simulation of an evacuated solar hot water collector model provided the heat energy available for regeneration of the desiccant. Solid desiccant of common material such as silica gel used in a rotary wheel is simulated using established validated computer models; this is coupled with evaporative cooling. Transients of the overall system for different cooling loads and solar radiation levels are presented. Finally, feasibility studies of the desiccant cooling systems are presented in comparison with traditional cooling system. Further analysis of the data presents optimization opportunities. Energy savings were achieved in all climatic conditions with decreased effectiveness in more humid conditions.


2021 ◽  
Author(s):  
Muhammad Sultan ◽  
Hadeed Ashraf ◽  
Takahiko Miyazaki ◽  
Redmond R. Shamshiri ◽  
Ibrahim A. Hameed

Temperature and humidity control are crucial in next generation greenhouses. Plants require optimum temperature/humidity and vapor pressure deficit conditions inside the greenhouse for optimum yield. In this regard, an air-conditioning system could provide the required conditions in harsh climatic regions. In this study, the authors have summarized their published work on different desiccant and evaporative cooling options for greenhouse air-conditioning. The direct, indirect, and Maisotsenko cycle evaporative cooling systems, and multi-stage evaporative cooling systems have been summarized in this study. Different desiccant materials i.e., silica-gels, activated carbons (powder and fiber), polymer sorbents, and metal organic frameworks have also been summarized in this study along with different desiccant air-conditioning options. However, different high-performance zeolites and molecular sieves are extensively studied in literature. The authors conclude that solar operated desiccant based evaporative cooling systems could be an alternate option for next generation greenhouse air-conditioning.


The function of air conditioning systems has seen impressive development over the most recent couple of decades everywhere throughout the world, particularly in commercial buildings in ensuring the occupant thermal comfort. All the same, it is followed to have bad effects on the earth as well as increased power consumption in buildings. Hence, there has been extensive research to recognize options, in contrast to conventional vapour compression air conditioning systems. This account intends to review the ongoing improvements concerning evaporative cooling advancements that might give adequate cooling comfort, reduce environmental impact and lower energy consumption in buildings. Researches have done as on date in evaporative cooling systems centre predominantly around mainly on drawing down the dry bulb temperature of the incoming air. The theoretical efficiency of 100% can be achieved when the room dry bulb temperature is equal to the wet-bulb temperature of the outside atmospheric air. A wide literature review has been carried out and mapped out the best evaporative cooling systems. The review covers direct evaporative cooling, indirect evaporative cooling, and combined direct-indirect cooling systems.


2020 ◽  
Vol 8 (2) ◽  
pp. 1-14
Author(s):  
Alaa R. Al-Badri ◽  
Zahraa Mohsin Farhan

The air conditioning system performance is significantly affected by temperature rise which causes continuous increase in electricity consumption and pollution problems to environment. Evaporative cooling systems are characterized by their low energy consumption so that they represent successful potential alternatives to traditional vapor compression air conditioning systems. This study investigates the performance of multi-stages evaporative cooling systems experimentally and theoretically. The experimental set-up is mainly composed of two parts: indirect unit to decrease the air temperature and direct unit to moisturize the air. The system is installed and equipped with temperatures, humidity, and air velocity sensors. The experimental tests were run continuously to monitor the system performance at various weather conditions between  to  in June and July months. A mathematical model for the system components was developed and implemented in the Engineering Equation Solver (EES) program to simulate the performance of multi-stages evaporative cooling systems. The results showed that the heat flux  increases with the increase in the Reynolds number Re of inlet air, velocity fraction  extracted air for sensible cooling, air temperature at the product-in , air velocity at the product-in , and the adiabatic efficiency . But, it is decreasing with increasing the spacing between the heat exchanger plates  and the relative humidity at the product-in . Optimum performance was obtained with very small space between plates which was bout 5mm. Good agreement have been shown between experimental and predicted data, where the  results. Uncertainty of experimental data was within the range 4.14 to 6.15.


Sign in / Sign up

Export Citation Format

Share Document