Gene deletion and constitutive expression of the pectate lyase gene 1 (MoPL1) lead to diminished virulence of Magnaporthe oryzae

2021 ◽  
Vol 60 (1) ◽  
pp. 79-88
Author(s):  
Alex Wegner ◽  
Florencia Casanova ◽  
Marco Loehrer ◽  
Angelina Jordine ◽  
Stefan Bohnert ◽  
...  
2020 ◽  
Vol 367 (18) ◽  
Author(s):  
Zhong Xu ◽  
Yuanyuan Li

ABSTRACT Production of secondary metabolites is tightly regulated by transcriptional regulators in Streptomyces. Many regulators have been identified by gene disruption in Streptomyces; however, there are still unknown regulatory genes yet to be revealed due to gene silence under laboratory culture conditions. In present study, a T7 expression system was used to identify novel regulators by gene deletion and constitutive-expression of nine candidates. We reported that the constitutive-expression of a MarR family transcriptional regulator MapR (SCO2398) resulted in increase of actinorhodin (ACT) production. The expression profiling indicated that MapR regulates ACT production through a transcriptional cascade. Collectively, our study suggests that MapR serves as a novel positive regulator of ACT production.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Bhaskar Reddy ◽  
Aundy Kumar ◽  
Sahil Mehta ◽  
Neelam Sheoran ◽  
Viswanathan Chinnusamy ◽  
...  

AbstractBlast disease incited by Magnaporthe oryzae is a major threat to sustain rice production in all rice growing nations. The pathogen is widely distributed in all rice paddies and displays rapid aerial transmissions, and seed-borne latent infection. In order to understand the genetic variability, host specificity, and molecular basis of the pathogenicity-associated traits, the whole genome of rice infecting Magnaporthe oryzae (Strain RMg_Dl) was sequenced using the Illumina and PacBio (RSII compatible) platforms. The high-throughput hybrid assembly of short and long reads resulted in a total of 375 scaffolds with a genome size of 42.43 Mb. Furthermore, comparative genome analysis revealed 99% average nucleotide identity (ANI) with other oryzae genomes and 83% against M. grisea, and 73% against M. poe genomes. The gene calling identified 10,553 genes with 10,539 protein-coding sequences. Among the detected transposable elements, the LTR/Gypsy and Type LINE showed high occurrence. The InterProScan of predicted protein sequences revealed that 97% protein family (PFAM), 98% superfamily, and 95% CDD were shared among RMg_Dl and reference 70-15 genome, respectively. Additionally, 550 CAZymes with high GH family content/distribution and cell wall degrading enzymes (CWDE) such endoglucanase, beta-glucosidase, and pectate lyase were also deciphered in RMg_Dl. The prevalence of virulence factors determination revealed that 51 different VFs were found in the genome. The biochemical pathway such as starch and sucrose metabolism, mTOR signaling, cAMP signaling, MAPK signaling pathways related genes were identified in the genome. The 49,065 SNPs, 3267 insertions and 3611 deletions were detected, and majority of these varinats were located on downstream and upstream region. Taken together, the generated information will be useful to develop a specific marker for diagnosis, pathogen surveillance and tracking, molecular taxonomy, and species delineation which ultimately leads to device improved management strategies for blast disease.


Plants ◽  
2020 ◽  
Vol 9 (10) ◽  
pp. 1316
Author(s):  
Ning Wang ◽  
Na Song ◽  
Zejun Tang ◽  
Xiaojie Wang ◽  
Zhensheng Kang ◽  
...  

Brachypodium distachyon, as an effective model of cereal grains, is susceptible to most destructive cereal pathogens. Senescence associated gene 101 (SAG101) has been studied extensively in Arabidopsis. SAG101 is one of the important regulators of plant immunity. However, no homologous genes of AtSAG101 were found in B. distachyon. In this study, the AtSAG101 gene was transformed into B. distachyon. Three transgenic plant lines containing the AtSAG101 gene were confirmed by PCR and GUS gene activity. There were fewer Puccinia brachypodii urediospores in the AtSAG101-overexpressing plants compared to wild type plants. P. brachypodii biomass was obviously decreased in AtSAG101 transgenic plants. The length of infection hyphae and infection unit areas of P. brachypodii were significantly limited in transgenic plants. Moreover, there were small lesions in AtSAG101 transgenic plants challenged by Magnaporthe oryzae. Salicylic acid accumulation was significantly increased, which led to elevated pathogenesis-related gene expression in transgenic B. distachyon inoculated by P. brachypodii or M. oryzae compared to wild type plants. These results were consistent with infected phenotypes. Overexpression of AtSAG101 in B. distachyon caused resistance to M. oryzae and P. brachypodii. These results suggest that AtSAG101 could regulate plant resistance in B. distachyon.


mSphere ◽  
2019 ◽  
Vol 4 (5) ◽  
Author(s):  
Shuzhen Deng ◽  
Wenda Sun ◽  
Lihong Dong ◽  
Guobing Cui ◽  
Yi Zhen Deng

ABSTRACT Magnaporthe oryzae causes the rice blast disease, which is one of the most serious diseases of cultivated rice worldwide. Glycosylation is an important posttranslational modification of secretory and membrane proteins in all eukaryotes, catalyzed by glycosyltransferases (GTs). In this study, we identified and characterized a type 2 glycosyltransferase, MoGt2, in M. oryzae. Targeted gene deletion mutants of MoGT2 (mogt2Δ strains) were nonpathogenic and were impaired in vegetative growth, conidiation, and appressorium formation at hyphal tips. Moreover, MoGT2 plays an important role in stress tolerance and hydrophobin function of M. oryzae. Site-directed mutagenesis analysis showed that conserved glycosyltransferase domains (DxD and QxxRW) are critical for biological functions of MoGt2. MoGT2 deletion led to altered glycoproteins during M. oryzae conidiation. By liquid chromatography-tandem mass spectrometry (LC-MS/MS), we identified several candidate proteins as potential substrates of MoGt2, including several heat shock proteins, two coiled-coil domain-containing proteins, aminopeptidase 2, and nuclease domain-containing protein 1. On the other hand, we found that a conidiation-related gene, genes involved in various metabolism pathways, and genes involved in cell wall integrity and/or osmotic response were differentially regulated in the mogt2Δ mutant, which may potentially contribute to its condiation defects. Taken together, our results show that MoGt2 is important for infection-related morphogenesis and pathogenesis in M. oryzae. IMPORTANCE The ascomycete fungus Magnapothe oryzae is the causal agent of rice blast disease, leading to severe loss in cultivated rice production worldwide. In this study, we identified a conserved type 2 glycosyltransferase named MoGt2 in M. oryzae. The mogt2Δ targeted gene deletion mutants exhibited pleiotropic defects in vegetative growth, conidiation, stress response, hyphal appressorium-mediated penetration, and pathogenicity. Furthermore, conserved glycosyltransferase domains are critical for MoGt2 function. The comparative transcriptome analysis revealed potential target genes under MoGt2 regulation in M. oryzae conidiation. Identification of potential glycoproteins modified by MoGt2 provided information on its regulatory mechanism of gene expression and biological functions. Overall, our study represents the first report of type 2 glycosyltransferase function in M. oryzae infection-related morphogenesis and pathogenesis.


Author(s):  
C.D. Bucana ◽  
R. Sanchez ◽  
R. Singh ◽  
I.J. Fidler

The purpose of this study was to demonstrate by ISH the presence of IL-8 mRNA, and by immunohistochemistry (IHC) the presence of the chemokine IL-8 and the distribution of infiltrating macrophages in subcutaneous melanomas in the same tumor. IL-8 is a multifunctional cytokine produced by melanoma cells, activated macrophages and monocytes and it has been shown to be a growth and angiogenic factor for tumor cells. More recently it was shown that constitutive expression of IL-8 correlated directly with metastatic potential of human melanoma cells in nude mice. IL-8 content of a solid tumor as determined by Western blot analysis does not take into account the contribution of macrophages. Previous studies showed that murine tumors contain many infiltrating cells interspersed among tumor cells whereas human tumors growing in nude mice exhibit macrophages at the periphery or between tumor islands. In this study we demonstrate the expression of IL-8 and the distribution of macrophages by immunoperoxidase assay and IL-8 mRNA by ISH.


2019 ◽  
Vol 476 (21) ◽  
pp. 3227-3240 ◽  
Author(s):  
Shanshan Wang ◽  
Yanxiang Zhao ◽  
Long Yi ◽  
Minghe Shen ◽  
Chao Wang ◽  
...  

Trehalose-6-phosphate (T6P) synthase (Tps1) catalyzes the formation of T6P from UDP-glucose (UDPG) (or GDPG, etc.) and glucose-6-phosphate (G6P), and structural basis of this process has not been well studied. MoTps1 (Magnaporthe oryzae Tps1) plays a critical role in carbon and nitrogen metabolism, but its structural information is unknown. Here we present the crystal structures of MoTps1 apo, binary (with UDPG) and ternary (with UDPG/G6P or UDP/T6P) complexes. MoTps1 consists of two modified Rossmann-fold domains and a catalytic center in-between. Unlike Escherichia coli OtsA (EcOtsA, the Tps1 of E. coli), MoTps1 exists as a mixture of monomer, dimer, and oligomer in solution. Inter-chain salt bridges, which are not fully conserved in EcOtsA, play primary roles in MoTps1 oligomerization. Binding of UDPG by MoTps1 C-terminal domain modifies the substrate pocket of MoTps1. In the MoTps1 ternary complex structure, UDP and T6P, the products of UDPG and G6P, are detected, and substantial conformational rearrangements of N-terminal domain, including structural reshuffling (β3–β4 loop to α0 helix) and movement of a ‘shift region' towards the catalytic centre, are observed. These conformational changes render MoTps1 to a ‘closed' state compared with its ‘open' state in apo or UDPG complex structures. By solving the EcOtsA apo structure, we confirmed that similar ligand binding induced conformational changes also exist in EcOtsA, although no structural reshuffling involved. Based on our research and previous studies, we present a model for the catalytic process of Tps1. Our research provides novel information on MoTps1, Tps1 family, and structure-based antifungal drug design.


2010 ◽  
Vol 41 (02) ◽  
Author(s):  
GM Stettner ◽  
B Auber ◽  
M Shoukier ◽  
C Höger ◽  
K Brockmann

2017 ◽  
Author(s):  
Pedro Marques ◽  
Mary Dang ◽  
Arla Ogilvie ◽  
Helen Storr ◽  
Michael Powell ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document