The discordance between primary breast cancer lesions and pulmonary metastatic lesions in expression of aldehyde dehydrogenase 1-positive cancer cells

Breast Cancer ◽  
2013 ◽  
Vol 21 (6) ◽  
pp. 698-702 ◽  
Author(s):  
Tomohiro Nogami ◽  
Tadahiko Shien ◽  
Takehiro Tanaka ◽  
Hiroyoshi Doihara ◽  
Naruto Taira ◽  
...  
2021 ◽  
Vol 39 (15_suppl) ◽  
pp. e12574-e12574
Author(s):  
Daniela Shveid Gerson ◽  
Alejandro Zentella - Dehesa ◽  
Raquel Gerson Cwilich ◽  
Benigno Rodriguez ◽  
Omar Serrano Villamayor ◽  
...  

e12574 Background: Currently there are no primary cultures or cell lines derived from patients with breast cancer and obesity. It has been postulated that breast cancer in obese women behaves differently as it does in non-obese women, as is composed of distinct biological features, as was generated in a different metabolic environment, as well as pertains to a different prognosis and different response to chemotherapy, lower rates of overall survival and a greater probability of recurrence. By creating a primary breast cancer culture bank of breast cancer tumors from women with obesity (BMI > 30kg/m2), we will establish a cell line exclusive to obese women in Mexico, where targeted therapy may be tested and treatment may be individualized depending on the characteristics of the patient. Methods: This study recruited 32 women with breast cancer and a BMI > 30 kg/m2, matched by 6 controls with are non-obese women with breast cancer. Elegibility criteria was determined by women with breast cancer confirmed by pathology, who had not been subjected to prior treatment regarding the neoplasm. The breast cancer removing surgeries and the patients were selected from the ABC Medical Center in Mexico City and all procedures were approved by the research and ethics committee of the hospital in question. Results: Through extensive communication a cooperative protocol was established between the departments of surgery, oncology, pathology and nursing to coordinate efforts and be able to take a 2 – 5 mm sample of the breast tumor removed from the patient. To be able to distinguish cancer cells from non-cancer cells (epithelial cells, fibroblasts, adipocytes) the Hayflick limit was be utilized. Once a primary breast cancer culture was established, 12 million cells will be injected into the subscapular area of athymic, nu-nu mice to be able to monitor tumoral growth in vivo and conduct a subsequent cellular analysis, determining it still pertains to the same characteristics of the tumor from which it was obtained. Conclusions: A primary breast cancer culture repository from patients with a BMI > 30 kg/m2 was established. This is the first primary breast cancer culture for both Mexican and obese women with breast cancer, the first in vitro method of analysis of specific characteristics typical of the Mexican population. Translational research may now be conducted on these new tumoral cultures to create individualized therapy for women with the distinct, aforementioned characteristics.


2013 ◽  
Vol 289 (3) ◽  
pp. 1303-1312 ◽  
Author(s):  
Qinglin Li ◽  
Gabriel Eades ◽  
Yuan Yao ◽  
Yongshu Zhang ◽  
Qun Zhou

Previously, we found that basal-like ductal carcinoma in situ (DCIS) contains cancer stem-like cells. Here, we characterize stem-like subpopulations in a model of basal-like DCIS and identify subpopulations of CD49f+/CD24− stem-like cells that possess aldehyde dehydrogenase 1 activity. We found that these cells show enhanced migration potential compared with non-stem DCIS cells. We also found that the chemopreventive agent sulforaphane can target these DCIS stem-like cells, reduce aldehyde dehydrogenase 1 (ALDH1) expression, and decrease mammosphere and progenitor colony formation. Furthermore, we characterized exosomal trafficking of microRNAs in DCIS and found that several microRNAs (miRs) including miR-140, miR-29a, and miR-21 are differentially expressed in exosomes from DCIS stem-like cells. We found that SFN treatment could reprogram DCIS stem-like cells as evidenced by significant changes in exosomal secretion more closely resembling that of non-stem cancer cells. Finally, we demonstrated that exosomal secretion of miR-140 might impact signaling in nearby breast cancer cells.


Neoplasma ◽  
2014 ◽  
Vol 61 (03) ◽  
pp. 352-362 ◽  
Author(s):  
E. J. KANG ◽  
H. JUNG ◽  
O. H. WOO ◽  
K. H. PARK ◽  
S. U. WOO ◽  
...  

2020 ◽  
Author(s):  
Toshiaki Akahane ◽  
Naoki Kanomata ◽  
Oi Harada ◽  
Tetsumasa Yamashita ◽  
Junichi Kurebayashi ◽  
...  

Abstract Background: Next-generation sequencing (NGS) has shown that recurrent/metastatic breast cancer lesions may have additional genetic changes compared with the primary tumor. These additional changes may be related to tumor progression and/or drug resistance. However, breast cancer-targeted NGS is not still widely used in clinical practice to compare the genomic profiles of primary breast cancer and recurrent/metastatic lesions.Methods: Triplet samples of genomic DNA were extracted from each patient’s normal breast tissue, primary breast cancer, and recurrent/metastatic lesion(s). A DNA library was constructed using the QIAseq Human Breast Cancer Panel (93 genes, Qiagen) and then sequenced using MiSeq (Illumina). The Qiagen web portal was utilized for data analysis.Results: Successful results for three or four samples (normal breast tissue, primary tumor, and at least one metastatic/recurrent lesion) were obtained for 11 of 35 breast cancer patients with recurrence/metastases (36 samples). We detected shared somatic mutations in all but one patient, who had a germline mutation in TP53. Additional mutations that were detected in recurrent/metastatic lesions compared with primary tumor were in genes including TP53 (three patients) and one case each of ATR, BLM, CBFB, EP300, ERBB2, MUC16, PBRM1, and PIK3CA. Actionable mutations and/or copy number variations (CNVs) were detected in 73% (8/11) of recurrent/metastatic breast cancer lesions.Conclusions: The QIAseq Human Breast Cancer Panel assay showed that recurrent/metastatic breast cancers sometimes acquired additional mutations and CNV. Such additional genomic changes could provide therapeutic target.


2020 ◽  
Vol 22 (7) ◽  
Author(s):  
Rita F. L. Ribeiro ◽  
Roberta V. Ferreira ◽  
Davyston C. Pedersoli ◽  
Paulo R. P. Paiva ◽  
Pricila da S. Cunha ◽  
...  

Medicine ◽  
2017 ◽  
Vol 96 (25) ◽  
pp. e7171 ◽  
Author(s):  
Juan Yao ◽  
Qin Jin ◽  
Xu-dong Wang ◽  
Hui-jun Zhu ◽  
Qi-chao Ni

Sign in / Sign up

Export Citation Format

Share Document