scholarly journals Hepatocellular carcinoma diagnosis using a novel electrochemiluminescence immunoassay targeting serum IgM-free AIM

Author(s):  
Tomo Shimizu ◽  
Takashi Sawada ◽  
Tomohide Asai ◽  
Yuka Kanetsuki ◽  
Jiro Hirota ◽  
...  

Abstract Background Recent increases in the number of patients with non-alcoholic steatohepatitis (NASH) warrant the identification of biomarkers for early detection of hepatocellular carcinoma (HCC) associated with NASH (NASH-HCC). IgM-free apoptosis inhibitor of macrophage (AIM), which generally associates with IgM in blood and exerts its biological function by dissociation from IgM, may serve as an effective biomarker for NASH-HCC. Here, we established a fully automatic and high-throughput electrochemiluminescence immunoassay (ECLIA) to measure IgM-free AIM and investigated its efficacy in diagnosing NASH-HCC and viral HCC. Methods IgM-free AIM levels were measured in 212 serum samples from patients with, or without, HCC related to NASH, hepatitis B virus, and hepatitis C virus, using ECLIA. We also developed an ECLIA for measuring both IgM-free and IgM-bound AIM and investigated the existing form of AIM in blood by size-exclusion chromatography. Results IgM-free AIM levels were significantly higher in the HCC group than in the non-HCC group, regardless of the associated pathogenesis. Moreover, the area under the receiver operating curve for IgM-free AIM was greater than that for conventional HCC biomarkers, alpha-fetoprotein or des-γ-carboxy prothrombin, regardless of the cancer stage. ECLIA counts of IgM-free AIM derived from samples fractionated by size-exclusion chromatography were significantly higher in patients with NASH-HCC than in healthy volunteers and in patients with non-alcoholic fatty liver and NASH. Conclusions Serum IgM-free AIM may represent a universal HCC diagnostic marker superior to alpha-fetoprotein or des-γ-carboxy prothrombin. Our newly established ECLIA could contribute to further clinical studies on AIM and in vitro HCC diagnosis.

2020 ◽  
Vol 58 (3) ◽  
pp. 408-415 ◽  
Author(s):  
Reza Soleimani ◽  
Julien Favresse ◽  
Tatiana Roy ◽  
Damien Gruson ◽  
Catherine Fillée

AbstractBackgroundThe correct identification of the macro-B12 interference (macroforms) is paramount to avoid potential erroneous clinical decisions. Our objectives were to determine whether immunoassays are affected by the presence of macro-B12 and to validate a polyethylene glycol (PEG) precipitation procedure to detect it.MethodsSixty-two serum samples obtained from healthy volunteers were analyzed to determine recovery and reference intervals (RIs) following PEG precipitation. Thereafter, 50 serum samples with very high levels of B12 (>1476 pmol/L) were randomly selected to search for macro-B12 interferences. Serum samples obtained from healthy volunteers and related PEG aliquots were analyzed on a Cobas® immunoassay. Patients’ samples were analyzed on both Cobas® and Architect® immunoassays. Finally, samples suspected to contain macro-B12 were analyzed by size-exclusion chromatography (SEC) to confirm the presence of macro-B12.ResultsRecovery and post-PEG RIs determined on a Cobas 8000® in healthy volunteers ranged from 68.3% to 108.4% and from 122.1 to 514.4 pmol/L, respectively. Fifteen samples (30%) were found to show macro-B12 while using the recovery criteria, and nine samples (18%) while using the post-PEG RI. The other immunoassay ran on the Architect i2000® was also affected by the presence of macro-B12. Size-exclusion chromatography studies confirmed the presence of macro-B12 (immunoglobulin-B12 complexes).ConclusionsThe prevalence of macro-B12 in elevated B12 samples is high. We suggest to systematically screen for the presence of macro-B12 with PEG precipitation procedure in samples with elevated B12 levels to avoid potential misdiagnosis or harmful clinical consequences.


2021 ◽  
Vol 22 (20) ◽  
pp. 11144
Author(s):  
Mikel Azkargorta ◽  
Ibon Iloro ◽  
Iraide Escobes ◽  
Diana Cabrera ◽  
Juan M. Falcon-Perez ◽  
...  

The proteomic profiling of serum samples supposes a challenge due to the large abundance of a few blood proteins in comparison with other circulating proteins coming from different tissues and cells. Although the sensitivity of protein detection has increased enormously in the last years, specific strategies are still required to enrich less abundant proteins and get rid of abundant proteins such as albumin, lipoproteins, and immunoglobulins. One of the alternatives that has become more promising is to characterize circulating extracellular vesicles from serum samples that have great interest in biomedicine. In the present work, we enriched the extracellular vesicles fraction from human serum by applying different techniques, including ultracentrifugation, size-exclusion chromatography, and two commercial precipitation methods based on different mechanisms of action. To improve the performance and efficacy of the techniques to promote purity of the preparations, we have employed a small volume of serum samples (<100 mL). The comparative proteomic profiling of the enriched preparations shows that ultracentrifugation procedure yielded a larger and completely different set of proteins than other techniques, including mitochondrial and ribosome related proteins. The results showed that size exclusion chromatography carries over lipoprotein associated proteins, while a polymer-based precipitation kit has more affinity for proteins associated with granules of platelets. The precipitation kit that targets glycosylation molecules enriches differentially protein harboring glycosylation sites, including immunoglobulins and proteins of the membrane attack complex.


Sign in / Sign up

Export Citation Format

Share Document