Time-dependent rural postman problem: time-space network formulation and genetic algorithm

Author(s):  
Jianbin Xin ◽  
Benyang Yu ◽  
Andrea D’Ariano ◽  
Heshan Wang ◽  
Meng Wang
2005 ◽  
Vol 20 (27) ◽  
pp. 2023-2034 ◽  
Author(s):  
A. P. BALACHANDRAN ◽  
ALEKSANDR PINZUL

We explore the consequences of time-space noncommutativity in the quantum mechanics of atoms and molecules, focusing on the Moyal plane with just time-space noncommutativity [Formula: see text]. Space rotations and parity are not automorphisms of this algebra and are not symmetries of quantum physics. Still, when there are spectral degeneracies of a time-independent Hamiltonian on a commutative spacetime which are due to symmetries, they persist when θ0i≠0: they do not depend at all on θ0i. They give no clue about rotation and parity violation when θ0i≠0. The persistence of degeneracies for θ0i≠0 can be understood in terms of invariance under deformed noncommutative "rotations" and "parity". They are not spatial rotations and reflection. We explain such deformed symmetries. We emphasize the significance of time-dependent perturbations (for example, due to time-dependent electromagnetic fields) to observe noncommutativity. The formalism for treating transition processes is illustrated by the example of nonrelativistic hydrogen atom interacting with quantized electromagnetic field. In the tree approximation, the 2s→1s + γ transition for hydrogen is zero in the commutative case. As an example, we show that it is zero in the same approximation for θ0i≠0. The importance of the deformed rotational symmetry is commented upon further using the decay Z0→2γ as an example.


Energies ◽  
2020 ◽  
Vol 13 (17) ◽  
pp. 4415
Author(s):  
Hak-Ju Lee ◽  
Byeong-Chan Oh ◽  
Seok-Woong Kim ◽  
Sung-Yul Kim

Reliability is an important index which determines the power service and quality provided to customers. As the demand increases continuously and the system changes in accordance with the environmental regulation, the reliability assessment in the distribution system becomes crucial. In this paper, we propose methods for improving the reliability of the distribution system using electric vehicles (EVs) in the system. In this paper, EVs are used as power supplying devices, such as a transportable energy storage system (ESS) which supplies power when fault occurs in the system, and by using a time–space network (TSN) in particular, EV capacity in accordance with the load arrival time was calculated. Unlike other existing reliability assessments, we did not use the average load of customers. Instead, by taking into account the load pattern by times, we considered the priority for load supply in accordance with the failure scenarios and failure times. Based on the priority calculated for each time of failure and failure scenario, plans for EV operation to minimize expected customer interruption cost (ECOST), the reliability index in the distribution system, were established. Finally, a case study was performed using the IEEE RBTS (Roy Billinton Test System) 2 Bus and the performance of the model proposed in this paper was verified based on the result.


Sign in / Sign up

Export Citation Format

Share Document