Soil Microbial Biomass Nitrogen, In Situ Respiration and Crop Yield Influenced by Deep Tillage, Moisture Regimes and N Nutrition in Sugarcane-Based System in Subtropical India

Sugar Tech ◽  
2016 ◽  
Vol 19 (2) ◽  
pp. 125-135 ◽  
Author(s):  
S. K. Shukla ◽  
R. L. Yadav ◽  
S. K. Awasthi ◽  
Asha Gaur
2018 ◽  
Vol 3 (3) ◽  
pp. 94-97
Author(s):  
Oijagbe IJ ◽  
Abubakar BY ◽  
Edogbanya PRO

This study is aimed at evaluating the effect of heavy metals on soil microbial processes. The effects of Lead (Pb) and Cadmium (Cd) at different concentrations were investigated over a period of eight weeks. Chloride salts of Pb and Cd were added singly and in combination to soil samples at room temperature (27°C) in different polythene bags. Samples were taken from the bags at two weeks interval and measurements were taken of the rate of microbial biomass nitrogen (MBN). The results showed that there was a significant decrease in the microbial biomass for all treated soils from the second week to the sixth week. But there was an observed increase in microbial biomass Nitrogen on the eight week. On the 6thweek, 40mgkg-1Cd gave the most significant decrease (16µg/g) and 1000mgkg-1 Pb gave the least significant decrease (70µg/g) of MBN.


2016 ◽  
Vol 8 (2) ◽  
pp. 1126-1132 ◽  
Author(s):  
Sanjay Arora ◽  
Divya Sahni

In modern agriculture, chemical pesticides are frequently used in agricultural fields to increase crop production. Besides combating insect pests, these insecticides also affect the activity and population of beneficial soil microbial communities. Chemical pesticides upset the activities of soil microbes and thus may affect the nutritional quality of soils. This results in serious ecological consequences. Soil microbes had different response to different pesticides. Soil microbial biomass that plays an important role in the soil ecosystem where they have crucial role in nutrient cycling. It has been reported that field application of glyphosate increased microbial biomass carbon by 17% and microbial biomass nitrogen by 76% in nine soils at 14 days after treatment. The soil microbial biomass C increased significantly upto 30 days in chlorpyrifos as well as cartap hydrochloride treated soil, but thereafter decreased progressively with time. Soil nematodes, earthworms and protozoa are affected by field application rates of the fungicide fenpropimorph and other herbicides. Thus, there is need to assess the effect of indiscriminate use of pesticides on soil microorganisms, affecting microbial activity and soil fertility.


Sign in / Sign up

Export Citation Format

Share Document