Experimental study on performance that carbon dioxide inhibits coal oxidation and spontaneous combustion

2011 ◽  
Vol 17 (3) ◽  
pp. 326-330 ◽  
Author(s):  
Jun Deng ◽  
Shi-rong Li ◽  
Yan-ni Zhang ◽  
Ying Mu ◽  
Yang Zhang
2021 ◽  
Vol 8 ◽  
Author(s):  
Liancong Wang ◽  
Weizhao Hu ◽  
Yuan Hu

In the goaf of the coal mine, there will be some high-temperature points before or during the fire. Under certain conditions, these high-temperature points will radiate heat to the surrounding coal in the form of thermal radiation, which, in turn, may also ignite the coal. Taking this situation into consideration, this study aims to investigate the influence of high-temperature thermal radiation on the transformation characteristics of coal oxidation and spontaneous combustion using the high-temperature thermal radiation method. The results show that an increase in thermal radiation value reduces the ignition time of coal gradually. The peak heat release rate, total heat release, peak smoke release rate, and total smoke release gradually increase. Additionally, the total carbon monoxide release reduces gradually, and the peak carbon dioxide production rate increases gradually. It is worth noting that as the heat radiation value increases, the peak value of CO production rate of lignite and bituminous coal is noted to decrease gradually, whereas that of anthracite increases gradually. The total carbon dioxide emissions of bituminous coal and anthracite increased gradually, whereas the total carbon dioxide emissions of lignite increased firstly and then decreased. This work proposes a novel method to study the coal oxidation and spontaneous combustion by a widely-recognized combustion apparatus.


2021 ◽  
Vol 2021 ◽  
pp. 1-19
Author(s):  
Naifu Cao ◽  
Yuntao Liang

Shallow burial, very close coal seam groups, and spontaneous combustion are typical characteristics of most coal seams in the Shendong mining area, China. With the continuous extension of the production level of various mines, some mining areas have gradually shown complex production conditions including multiple types of fire forms such as those in coal fields, small kilns, and multilayer mined-out and hidden high-temperature areas, resulting in fire control difficultly and posing threats to safety. With the aim of limiting the above problems, in this work, the liquid carbon dioxide fire prevention technology is focused on. Phase change and migration law of CO2 in the goaf are studied. Through the study on the influence of the use of liquid CO2 on the cooling law of high-temperature coal and on its spontaneous combustion characteristics and through thermal analysis experiments, it was observed that the porosity of loose coal has a significant impact on the cooling effect of carbon dioxide. Moreover, it was emphasized that the higher the CO2 concentration, the higher the rise in temperature of coal oxidation, and the increase of CO2 concentration was able to affect apparent activation of coal oxidation, leading to a theoretical basis to explain the effect of CO2 in inhibiting coal spontaneous combustion. The utilization of Fluent numerical modeling allowed us to simulate the diffusion radius of liquid CO2 injected into the goaf, to study the effective inerting radius of liquid CO2 on the left coal in the goaf. After comprehensive analysis of experiments and numerical simulations, appropriate equipment and process flow are selected and designed. Taking the Huojitujing well of Daliuta Coal Mine in Shendong mining area as the industrial test site, an intelligent pressure-holding transportation of liquid CO2 in the 1000 m transportation pipeline was developed. The surface liquid CO2 infusion capacity was 20 t/h, and the pressure-holding interval at the end of the transportation pipeline was determined to be 1.0–2.3 MPa. The maximum diffusion radius of the mined-out area is 300 m under the effect of positive air flow and self-expansion and diffusion of CO2 gas in the roadway. Under the influence of reverse wind flow and self-expansion and diffusion, the diffusion radius of the goaf is 150 m, and the maximum storage time of gaseous CO2 in the goaf is 27 h. Liquid CO2 was injected into the area with relevant presence of CO, an indicator of possible fires. Practice has proved that, after 65 hours and two perfusion processes, the CO concentration dropped from 790 ppm to 41 ppm, which indicates that liquid CO2 has a significant effect on fire prevention.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Li Shen ◽  
Qiang Zeng

AbstractIn the present paper, with using diverse methods (including the SEM, the XRD, the TPO, the FTIR, and the TGA) , the authors analysed samples of the major coal seam in Dahuangshan Mining area with different particle sizes and with different heated temperatures (from 50 to 800 °C at regular intervals of 50 °C). The results from SEM and XRD showed that high temperature and high number of pores, fissures, and hierarchical structures in the coal samples could facilitate oxidation reactions and spontaneous combustion. A higher degree of graphitization and much greater number of aromatic microcrystalline structures facilitated spontaneous combustion. The results from TPO showed that the oxygen consumption rate of the coal samples increased exponentially with increasing temperature. The generation rates of different gases indicated that temperatures of 90 °C or 130 °C could accelerate coal oxidation. With increasing temperature, the coal oxidation rate increased, and the release of gaseous products was accelerated. The FTIR results showed that the amount of hydroxide radicals and oxygen-containing functional groups increased with the decline in particle size, indicating that a smaller particle size may facilitate the oxidation reaction and spontaneous combustion of coal. The absorbance and the functional group areas at different particle sizes were consistent with those of the heated coal samples, which decreased as the temperature rose. The results from TGA showed that the characteristic temperature T3 declined with decreasing particle size. After the sample with 0.15–0.18 mm particle size was heated, its carbon content decreased, and its mineral content increased, inhibiting coal oxidation. This result also shows that the activation energy of the heated samples tended to increase at the stage of high-temperature combustion with increasing heating temperature.


Sign in / Sign up

Export Citation Format

Share Document