scholarly journals Investigation of the kinetics of spontaneous combustion of the major coal seam in Dahuangshan mining area of the Southern Junggar coalfield, Xinjiang, China

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Li Shen ◽  
Qiang Zeng

AbstractIn the present paper, with using diverse methods (including the SEM, the XRD, the TPO, the FTIR, and the TGA) , the authors analysed samples of the major coal seam in Dahuangshan Mining area with different particle sizes and with different heated temperatures (from 50 to 800 °C at regular intervals of 50 °C). The results from SEM and XRD showed that high temperature and high number of pores, fissures, and hierarchical structures in the coal samples could facilitate oxidation reactions and spontaneous combustion. A higher degree of graphitization and much greater number of aromatic microcrystalline structures facilitated spontaneous combustion. The results from TPO showed that the oxygen consumption rate of the coal samples increased exponentially with increasing temperature. The generation rates of different gases indicated that temperatures of 90 °C or 130 °C could accelerate coal oxidation. With increasing temperature, the coal oxidation rate increased, and the release of gaseous products was accelerated. The FTIR results showed that the amount of hydroxide radicals and oxygen-containing functional groups increased with the decline in particle size, indicating that a smaller particle size may facilitate the oxidation reaction and spontaneous combustion of coal. The absorbance and the functional group areas at different particle sizes were consistent with those of the heated coal samples, which decreased as the temperature rose. The results from TGA showed that the characteristic temperature T3 declined with decreasing particle size. After the sample with 0.15–0.18 mm particle size was heated, its carbon content decreased, and its mineral content increased, inhibiting coal oxidation. This result also shows that the activation energy of the heated samples tended to increase at the stage of high-temperature combustion with increasing heating temperature.

2020 ◽  
Author(s):  
JiaJia Song ◽  
Jun Deng ◽  
JingYu Zhao

<p>Coal spontaneous combustion is one of the severe nature hazards among nature resources. There are many influence factors which control the development of spontaneous combustion such as particle size, oxygen concentration, etc. Weathering effects alter the spontaneous combustion characteristics of coal. To explore the effect of particle size on gas emission from weathered coal under high temperature oxygen deficiency, the macroscopic spontaneous combustion characteristics of weathered coal with various particle sizes in high temperature oxidation process were studied. The gas concentration of different particle sizes with weathered coal oxidation from normal temperature to 600 °C was tested by the self-built high temperature program experiment system, and the variation law of the indicator gas was analyzed. The results showed that there were different experimental phenomena in each particle size coal sample. The concentration of indicator gas neither increased nor decreased monotonically with the change of particle size. Roughly, 3 mm is the critical particle size in the process of high temperature oxidation of weathered coal. The experimental results provided a pivotal theoretical basis for the early prediction and the scientific prevention of the spontaneous combustion of the weathered coal during the mining process of the open pit and the shallow coal seam.</p>


2021 ◽  
Vol 2021 ◽  
pp. 1-19
Author(s):  
Naifu Cao ◽  
Yuntao Liang

Shallow burial, very close coal seam groups, and spontaneous combustion are typical characteristics of most coal seams in the Shendong mining area, China. With the continuous extension of the production level of various mines, some mining areas have gradually shown complex production conditions including multiple types of fire forms such as those in coal fields, small kilns, and multilayer mined-out and hidden high-temperature areas, resulting in fire control difficultly and posing threats to safety. With the aim of limiting the above problems, in this work, the liquid carbon dioxide fire prevention technology is focused on. Phase change and migration law of CO2 in the goaf are studied. Through the study on the influence of the use of liquid CO2 on the cooling law of high-temperature coal and on its spontaneous combustion characteristics and through thermal analysis experiments, it was observed that the porosity of loose coal has a significant impact on the cooling effect of carbon dioxide. Moreover, it was emphasized that the higher the CO2 concentration, the higher the rise in temperature of coal oxidation, and the increase of CO2 concentration was able to affect apparent activation of coal oxidation, leading to a theoretical basis to explain the effect of CO2 in inhibiting coal spontaneous combustion. The utilization of Fluent numerical modeling allowed us to simulate the diffusion radius of liquid CO2 injected into the goaf, to study the effective inerting radius of liquid CO2 on the left coal in the goaf. After comprehensive analysis of experiments and numerical simulations, appropriate equipment and process flow are selected and designed. Taking the Huojitujing well of Daliuta Coal Mine in Shendong mining area as the industrial test site, an intelligent pressure-holding transportation of liquid CO2 in the 1000 m transportation pipeline was developed. The surface liquid CO2 infusion capacity was 20 t/h, and the pressure-holding interval at the end of the transportation pipeline was determined to be 1.0–2.3 MPa. The maximum diffusion radius of the mined-out area is 300 m under the effect of positive air flow and self-expansion and diffusion of CO2 gas in the roadway. Under the influence of reverse wind flow and self-expansion and diffusion, the diffusion radius of the goaf is 150 m, and the maximum storage time of gaseous CO2 in the goaf is 27 h. Liquid CO2 was injected into the area with relevant presence of CO, an indicator of possible fires. Practice has proved that, after 65 hours and two perfusion processes, the CO concentration dropped from 790 ppm to 41 ppm, which indicates that liquid CO2 has a significant effect on fire prevention.


Geofluids ◽  
2017 ◽  
Vol 2017 ◽  
pp. 1-10 ◽  
Author(s):  
Guanghui Jiang ◽  
Jianping Zuo ◽  
Teng Ma ◽  
Xu Wei

Understanding the change of permeability of rocks before and after heating is of great significance for exploitation of hydrocarbon resources and disposal of nuclear waste. The rock permeability under high temperature cannot be measured with most of the existing methods. In this paper, quality, wave velocity, and permeability of granite specimen from Maluanshan tunnel are measured after high temperature processing. Quality and wave velocity of granite decrease and permeability of granite increases with increasing temperature. Using porosity as the medium, a new wave velocity-permeability model is established with modified wave velocity-porosity formula and Kozeny-Carman formula. Under some given wave velocities and corresponding permeabilities through experiment, the permeabilities at different temperatures and wave velocities can be obtained. By comparing the experimental and the theoretical results, the proposed formulas are verified. In addition, a sensitivity analysis is performed to examine the effect of particle size, wave velocities in rock matrix, and pore fluid on permeability: permeability increases with increasing particle size, wave velocities in rock matrix, and pore fluid; the higher the rock wave velocity, the lower the effect of wave velocities in rock matrix and pore fluid on permeability.


2015 ◽  
Vol 2015 ◽  
pp. 1-8 ◽  
Author(s):  
Xianhai Hu ◽  
Xingyuan Zhang ◽  
Jin Liu

A waterborne polyurethane-based polymeric dye (WPU-CFBB) was synthesized by anchoring 1, 4-bis(methylamino)anthraquinone (CFBB) to waterborne polyurethane chains. The number molecular weight, glass transition temperature, and average emulsion particle size for the polymeric dye were determined, respectively. This polymeric dye exhibited intriguing optical behaviors. The polymeric dye engendered two new absorption bands centered at about 520 nm and 760 nm if compared with CFBB in UV-vis spectra. The 760 nm peak showed hypsochromic shift with the decrease of average particle sizes. The polymeric dye dramatically demonstrated both hypsochromic and bathochromic effects with increasing temperature. The fluorescence intensity of the polymeric dye was much higher than that of CFBB. It was found that the fluorescence intensities would be enhanced from 20°C to 40°C and then decline from 40°C to 90°C. The fluorescence of the polymeric dye emulsion was very stable and was not sensitive to quenchers.


2021 ◽  
Vol 1 (2) ◽  
Author(s):  
Dariusz OBRACAJ ◽  
Marek KORZEC ◽  
Tien Tung VU

The liability of coal to spontaneous combustion is the principal cause of mine fires. Spontaneouscombustion is one of the main threats in Polish and Vietnamese coal mines. The article presents an analysisof the spontaneous combustion of coal in mines of both countries. It is related to the natural prone of coalto spontaneous heating and consequently to its self-ignition. Despite the relevant recognition of themethods of preventing this threat, in mines, spontaneous combustion occurs during the exploitation ofcoal seams with low and very high self-ignition tendency. Apart from the technical factors related to thedesign of coal seam mining, the properties of coal have a significant impact on the occurrence ofspontaneous combustion. Their correct recognition is essential to the precautions against spontaneouscombustion for minimalizing the risk of a mine fire. Therefore, it is necessary to study the factorsinfluencing the propensity of coal to spontaneous heating. A review of the methods used to determine thepropensity of coal to spontaneous combustion is presented in the article. Based on the high-temperaturemethod of determining the propensity of coals to spontaneous combustion, the influence of selectedfactors related to samples' preparation for testing on the determination result was investigated. Theinfluence of the fractional decomposition and the moisture content in the prepared samples on thedetermination result was demonstrated. The presented research results may improve research proceduresfor determining the propensity of coal to spontaneous combustion.


Minerals ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1328
Author(s):  
Katrin Stephan ◽  
Mauro Ciarniello ◽  
Olivier Poch ◽  
Bernard Schmitt ◽  
David Haack ◽  
...  

Laboratory measurements were performed to study the spectral signature of H2O ice between 0.4 and 4.2 µm depending on varying temperatures between 70 and 220 K. Spectral parameters of samples with particle sizes up to ~1360 µm, particle size mixtures, and different particle shapes were analyzed. The band depth (BD) of the major H2O-ice absorptions at 1.04, 1.25, 1.5, and 2 µm offers an excellent indicator for varying particle sizes in pure H2O ice. The spectral changes due to temperature rather, but not exclusively, affect the H2O-ice absorptions located at 1.31, 1.57, and 1.65 µm and the Fresnel reflection peaks at 3.1 and 3.2 µm, which strongly weaken with increasing temperature. As the BDs of the H2O-ice absorptions at 1.31, 1.57, and 1.65 µm increase, the band centers (BCs) of the H2O-ice absorptions at 1.25 and 1.5 µm slightly shift to shorter wavelengths. However, the BCs of the strong H2O-ice absorptions can also be affected by saturation in the case of large particles. The collected spectra provide a useful spectral library for future investigations of icy satellites such as Ganymede and Callisto, the major targets of ESA’s JUICE mission.


2008 ◽  
Vol 368-372 ◽  
pp. 686-687 ◽  
Author(s):  
Wei Quan Shao ◽  
Shaou Chen ◽  
Da Li ◽  
Ping Qi ◽  
Yong Wan ◽  
...  

The sintering activation energy of high-purity alumina powders with different particle sizes was evaluated under non-isothermal condition. It was found that, during sintering, the activation energy for the lower temperature stage is higher than that for higher temperature stage. The value of the activation energies for the powder compact with larger particle size was higher than that for the powder compact with smaller particle size. If the selected temperature interval for calculation was narrow enough, the evaluated activation energy values varied with the increasing temperature continuously.


2012 ◽  
Vol 710 ◽  
pp. 314-319 ◽  
Author(s):  
Rohit Kumar Gupta ◽  
Bhanu Pant ◽  
Vijaya Agarwala ◽  
Parameshwar Prasad Sinha

Titanium aluminide intermetallic was made through reaction synthesis (RS) process using elemental powders. Pressure assisted synthesis was carried out at high temperature under vacuum. Ti powder with two different particle sizes (200μm and 30μm average) were used in RS. Synthesized blocks were homogenized and characterized for chemical homogeneity, density, phase formation and microstructure evolution. Products near to theoretical density have been obtained with uniform chemistry after homogenization. Al3Ti as a major phase along with TiAl as minor phase was confirmed after RS and TiAl along with Ti3Al was observed after homogenization. Homogenization cycle was found to be different for the alloys made through different Ti particle sizes. Significant role of Ti particle size has been observed in this pressure assisted RS process.


2021 ◽  
Vol 8 ◽  
Author(s):  
Liancong Wang ◽  
Weizhao Hu ◽  
Yuan Hu

In the goaf of the coal mine, there will be some high-temperature points before or during the fire. Under certain conditions, these high-temperature points will radiate heat to the surrounding coal in the form of thermal radiation, which, in turn, may also ignite the coal. Taking this situation into consideration, this study aims to investigate the influence of high-temperature thermal radiation on the transformation characteristics of coal oxidation and spontaneous combustion using the high-temperature thermal radiation method. The results show that an increase in thermal radiation value reduces the ignition time of coal gradually. The peak heat release rate, total heat release, peak smoke release rate, and total smoke release gradually increase. Additionally, the total carbon monoxide release reduces gradually, and the peak carbon dioxide production rate increases gradually. It is worth noting that as the heat radiation value increases, the peak value of CO production rate of lignite and bituminous coal is noted to decrease gradually, whereas that of anthracite increases gradually. The total carbon dioxide emissions of bituminous coal and anthracite increased gradually, whereas the total carbon dioxide emissions of lignite increased firstly and then decreased. This work proposes a novel method to study the coal oxidation and spontaneous combustion by a widely-recognized combustion apparatus.


2021 ◽  
Vol 45 (4) ◽  
pp. 317-327
Author(s):  
Yongfei Jin ◽  
Li Yan ◽  
Yin Liu ◽  
Chuansheng Li

In order to solve the shortcomings of the traditional mining anti-extinguishing gel material such as low strength and poor water retention, a high hydrocolloid anti-extinguishing material was developed with sodium alginate and light calcium carbonate as the base material and gluconolactone as the retarder, which was mixed and reacted. The base material ratio of highly efficient water-retaining colloidal material for coal void filling was determined as 2% SA + 0.5% PCC + 1% GDL with a moulding time of 4.5 min, while the base material ratio of highly efficient water-retaining colloidal material for extinguishing high temperature fires was 2.5% SA + 1% PCC + 1% GDL with a moulding time of 2.5 min. The highly efficient water-retaining colloidal material was found to reduce the concentration of signature gas and delay the characteristic temperature point and increase the activation energy of coal oxidation, which indicates that the highly efficient water-retaining colloidal material can effectively inhibit the spontaneous combustion process of coal at low temperature stage. Infrared spectroscopy experiments were conducted to investigate the microscopic resistance mechanism of the highly efficient water-retaining colloidal material, and the results showed that the highly efficient water-retaining colloidal material mainly reduce the activity of Ar-C-O-, -COO-, -CH3, -CH2 and -OH in coal to inhibit the spontaneous combustion of coal.


Sign in / Sign up

Export Citation Format

Share Document