Nieuw: NDF-standpunt Do-It-Yourself 'closed-loop'-systemen

2021 ◽  
Vol 19 (3) ◽  
pp. 31-33
Author(s):  
Erik Serné
Keyword(s):  
2021 ◽  
Vol 55 (3Sup) ◽  
pp. 41
Author(s):  
Luis Grosembacher

El aumento exponencial en la prevalencia de diabetes mellitus (DM) en todo el mundo incluye también el incremento de personas con DM1. Esta enfermedad se caracteriza por la destrucción autoinmune y en forma progresiva de las células beta pancreáticas, ocasionando una insuficiencia endógena de insulina e hiperglucemia que solo puede controlarse mediante la administración exógena de insulina.La insulinización intensiva con múltiples dosis de insulina es la mejor opción terapéutica para controlar la glucemia y alcanzar los objetivos de hemoglobina glicosilada A1c, con el menor número de hipoglucemias y de riesgo de complicaciones crónicas. Esto requiere de una activa y frecuente participación de la persona con DM1 y que en el tiempo es una barrera para lograr un óptimo control.En pos de alcanzar aquellos objetivos, ha sido amplio y rápido el crecimiento terapéutico tecnológico para DM1 a través del desarrollo de sensores continuos de glucosa (continuous glucose monitor, CGM) y de infusores de insulina subcutánea (continuous subcutaneous insulin infusion, CSII). Desde su aprobación, el uso de los sistemas automatizados de administración de insulina (2017) para adultos, adolescentes y niños con DM1 demostraron ser eficaces y seguros para lograr un adecuado control glucémico en condiciones nocturnas o basales. La infusión automática de insulina (IAI) o lazo cerrado (closed loop, CL) requiere del uso de CSII y CGM comunicados entre sí (por Bluetooth) e integrados funcionalmente a través de algoritmos de control que regulan la administración de insulina según la glucosa subcutánea, llevando la glucemia a rangos deseados para cada paciente. Estos algoritmos se alojan en diferentes plataformas, como un infusor de insulina o teléfono celular o bien de forma remota (Do it yourself o DIY), y desde allí controlan la infusión de insulina según la glucosa subcutánea en forma automática. Los sistemas CL pueden ser monohormonales (solo insulina) o bihormonales (insulina y glucagón), y según requieran o no la participación del paciente en la programación del bolo de insulina pre-comida, se denominan híbridos (hybrid closed loop, HCL) o totalmente automáticos (fully automatic close loop, FCL) respectivamente.Si bien las evidencias observadas en el control glucémico con estos sistemas HCL son alentadoras, los usuarios siguen experimentando la carga del recuento de carbohidratos para los bolos de insulina previo a las comidas. Los pacientes que presentan un deficiente control metabólico debido a que omiten o tardan en administrar los bolos de comida serían beneficiados con los FCL. Estos algoritmos FCL controlan la glucemia prandial sin requerir el anuncio de comida y rápidamente se anticipan y detectan en forma predictiva la variación de glucemia según la carga de carbohidratos, aliviando la carga diaria del cálculo de carbohidratos por parte de los pacientes con DM1. Pocos consorcios en el mundo están avanzando con el difícil desafío que implica la validación de estos algoritmos FCL, uno de ellos en Argentina (automatic regulator of glucose, ARG), y que permitirían alcanzar un adecuado control metabólico con la mejor calidad de vida.


PLoS ONE ◽  
2020 ◽  
Vol 15 (12) ◽  
pp. e0243465
Author(s):  
Anna Laura Herzog ◽  
Jonas Busch ◽  
Christoph Wanner ◽  
Holger K. von Jouanne-Diedrich

Continuous glucose monitoring (CGM) improves treatment with lower blood glucose levels and less patient effort. In combination with continuous insulin application, glycemic control improves and hypoglycemic episodes should decrease. Direct feedback of CGM to continuous subcutaneous insulin application, using an algorithm is called a closed-loop (CL) artificial pancreas system. Commercial devices stop insulin application by predicting hypoglycemic blood glucose levels through direct interaction between the sensor and pump. The prediction is usually made for about 30 minutes and insulin delivery is restarted at the previous level if a rise in blood glucose is predicted within the next 30 minutes (hybrid closed loop system, HCL this is known as a predictive low glucose suspend system (PLGS)). In a fully CL system, sensor and pump communicate permanently with each other. Hybrid closed-loop (HCL) systems, which require the user to estimate the meal size and provide a meal insulin basis, are commercially available in Germany at the moment. These systems result in fewer hyperglycemic and hypoglycemic episodes with improved glucose control. Open source initiatives have provided support by building do-it-yourself CL (DIYCL) devices for automated insulin application since 2014, and are used by a tech-savvy subgroup of patients. The first commercial hybrid CL system has been available in Germany since September 2019. We surveyed 1054 patients to determine which devices are currently used, which features would be in demand by potential users, and the benefits of DIYCL systems. 9.7% of these used a DIYCL system, while 50% would most likely trust these systems but more than 85% of the patients would use a commercial closed loop system, if available. The DIYCL users had a better glucose control regarding their time in range (TIR) and glycated hemoglobin (HbA1c).


2018 ◽  
Vol 16 (08) ◽  
pp. 338-343
Author(s):  
Katarina Braune ◽  
Ulrike Thurm ◽  
Saskia Wolf

ZUSAMMENFASSUNGEine automatische Dosierung von Insulin, Blutzuckerwerte im Zielbereich und ungestörter Schlaf – ein Traum vieler Menschen mit Diabetes und ihrer Familien, der sich durch die selbst gebaute „künstliche Bauchspeicheldrüse“ bereits für einige erfüllt hat. #WeAreNotWaiting – dahinter steht eine innovative Bewegung engagierter Patienten und Patientinnen und ihrer Angehörigen, die sich ihre Diabetestechnologie selbst erstellen, bis hin zum „Closed Loop“, welcher Insulin je nach Glukosespiegel automatisch dosiert. Da jedes Do-it-Yourself-System ein Selbstexperiment auf eigenes Risiko unter Nutzung eines nicht zugelassenen Produkts ist, ergeben sich zahlreiche Fragestellungen hinsichtlich Sicherheit und Risiken, und auch bezüglich der Haftung bei der Nutzung dieser Systeme. Weiterhin stellt sich aber vor allem auch die zentrale Frage: Warum müssen wir eigentlich so lange auf Closed-Loop-Systeme warten?


2018 ◽  
Vol 48 (11) ◽  
pp. 1400-1404 ◽  
Author(s):  
Tien‐Ming Hng ◽  
David Burren

Electronics ◽  
2019 ◽  
Vol 8 (6) ◽  
pp. 612 ◽  
Author(s):  
Jesús Berián ◽  
Ignacio Bravo ◽  
Alfredo Gardel ◽  
José Luis Lázaro ◽  
Sergio Hernández

The number of patients living with diabetes has increased significantly in recent years due to several factors. Many of these patients are choosing to use insulin pumps for their treatment, artificial systems that administer their insulin and consist of a glucometer and an automatic insulin supply working in an open loop. Currently, only a few closed-loop insulin delivery devices are commercially available. The most widespread systems among patients are what have been called the “Do-It-Yourself Hybrid Closed-Loop systems.” These systems require the use of platforms with high computing power. In this paper, we will present a novel wearable system for insulin delivery that reduces the energy and computing consumption of the platform without affecting the computation requirements. Patients’ information is obtained from a commercial continuous glucose sensor and a commercial insulin pump operating in a conventional manner. An ad-hoc embedded system will connect with the pump and the sensor to collect the glucose data and process it. That connection is accomplished through a radiofrequency channel that provides a suitable system for the patient. Thus, this system does not require to be connected to any other processor, which increases the overall stability. Using parameters configured by the patient, the control system will make automatic adjustments in the basal insulin infusion thereby bringing the patient’s glycaemia to the target set by a doctor’s prescription. The results obtained will be satisfactory as long as the configured parameters faithfully match the specific characteristics of the patient. Results from the simulation of 30 virtual patients (10 adolescents, 10 adults, and 10 children), using a python implementation of the FDA-approved (Food and Drug Administration) UVa (University of Virginia)/Padova Simulator and a python implementation of the proposed algorithm, are presented.


PLoS ONE ◽  
2021 ◽  
Vol 16 (4) ◽  
pp. e0248965
Author(s):  
Andrzej Gawrecki ◽  
Dorota Zozulinska-Ziolkiewicz ◽  
Magdalena A. Michalak ◽  
Anna Adamska ◽  
Michal Michalak ◽  
...  

Background The aim of the study was to assess the safety and glycemic outcomes with the use of a Do-It-Yourself (DIY) Hybrid Closed-Loop (HCL) system based on the AndroidAPS application in type 1 diabetes (T1D). Methods Single-center clinical trial, with 3-week run-in and 12-week study period. DIY HCL system consisted of the Dana Diabecare RS insulin pump, Dexcom G5 continuous glucose monitoring system and AndroidAPS application. Primary outcome was safety: incidences of severe hypoglycemia, diabetic ketoacidosis, time spent in glycemia <54 mg/dl. Secondary endpoints included percentage of time in range (TIR) 70–180 mg/dl, time below 70 mg/dl, HbA1c, insulin requirements, and body weight. Results In total 12 subjects (5 men, 7 women) were enrolled, mean age 31.3±6.7, 95%CI(27.7–34.9) years, mean diabetes duration 16.1±5.7, 95%CI(13.0–19.2) years. No episodes of severe hypoglycemia or ketoacidosis were observed. Percentage of time spent in glycemia below 54mg/dl was not increased. Average sensor glycemia was lower in the study period than baseline (141.1 ± 8.4, 95%CI(136.3–145.9) vs. 153.3 ± 17.9, 95%CI(143.2–163.4), mg/dl p<0.001). TIR 70–180 mg/dl was improved by 11.3%, 95%CI(2.8%-19.8%) (from 68.0 ± 12.7 to 79.3 ± 6.4%, p<0.001), without increasing hypoglycemia time. The HbA1c level decreased by -0.5%, 95%CI(-0.9%–-0.1%) (from 6.8 ± 0.5 to 6.3 ± 0.4%, p<0.001). Additionally, in the last 4 weeks of the study period participants significantly improved and showed TIR 70–180 mg/dl 82.1 ± 5.6%, 95%CI(78.9–85.3), time <54 mg/dl 0.30 (0.20–0.55)%, median 95%CI(0.1–0.7) and <70 mg/dl 1.90 (1.10–3.05)%, median 95%CI(0.7–3.2). The insulin requirement and body weight did not change in the study. Conclusions The study revealed safety of the Do-It-Yourself HCL system AndroidAPS in adults with T1D, limited to well-controlled, highly selected and closely monitored patients. The use of AndroidAPS significantly improved HbA1c, time in range and average sensor glycemia without increasing hypoglycemia. As both patients and their medical team are gaining experience using the system over time, they improve glycemic control. Trial registration German Clinical Trials Register: no. DRKS00015439; https://www.drks.de/drks_web/navigate.do?navigationId=trial.HTML&TRIAL_ID=DRKS00015439.


2019 ◽  
Vol 13 (4) ◽  
pp. 645-663 ◽  
Author(s):  
Laya Ekhlaspour ◽  
Ideen Tabatabai ◽  
Bruce Buckingham

Using a continuous glucose monitor (CGM) improves glycemic control in patients with type 1 diabetes. The ambulatory glucose profile (AGP) has been recommended as a standard method for reporting CGM data. However, in recently developed automated insulin delivery (AID) systems, a standard format for reporting data has not yet been developed. Instead, reports are specific to each system being used. Currently, the only FDA approved AID system is a hybrid closed-loop insulin pump. In these systems, the patient is still required to announce a meal, respond to alerts, and keep the system in automated insulin delivery. The integrated pump and sensor information provides insights into how the system is performing, and how to make changes to tunable parameters, such as carbohydrate to insulin ratios. The reports also offer a window into human behavior related to performing diabetes tasks, responding to alarms, reasons for exiting HCL, and how glycemic goals are being met. This article reviews the pump and CGM data provided by several of the current closed-loop systems with a focus on systems that are currently approved in the United States (MiniMed™ 670G, Tandem Basal:IQ) and those used by patients using do-it-yourself systems. A step-wise approach to reviewing the nuances of these systems is provided. The comparison may reinforce the importance of the continued need for streamlining a standard report for providers to be able to interpret the CGM data of these systems.


2020 ◽  
Vol 37 (12) ◽  
pp. 1977-1980 ◽  
Author(s):  
L. Dowling ◽  
E. G. Wilmot ◽  
P. Choudhary

Sign in / Sign up

Export Citation Format

Share Document