Detachment folding in a Lower Cambrian–Upper Permian karst reservoir: 3D model of the Yubei 3D area (eastern Markit Slope, Tarim Basin, Northwest China)

2016 ◽  
Vol 9 (14) ◽  
Author(s):  
JiuMei Li ◽  
LiangJie Tang ◽  
Yong Yue ◽  
Meng Li ◽  
ShengLong Zhang ◽  
...  
Geophysics ◽  
2020 ◽  
Vol 85 (6) ◽  
pp. B223-B232
Author(s):  
Kun Xiang ◽  
Linghe Han ◽  
Ziduo Hu ◽  
Evgeny Landa

Different scales of voids and cavities in karst systems demonstrate considerable potential as exploration targets in the Tarim Basin, northwest China. Numerous diffraction events exist in the seismic data above the karst reservoir in this area because of the strong impedance contrast and irregular shape of voids. The conventional impedance inversion method using migrated data as an input cannot easily estimate the location of voids and the impedance inside the voids. In this case, an alternative approach to impedance inversion that considers the diffractive component of the total wavefield and uses the unmigrated data as an input should be used. The inversion consists of a least-squares minimization of the misfit function between the observed and modeled data. Forward modeling incorporates a combination of reflection and diffraction wavefield components. The adopted method is applied to physical modeling and field data recorded above the karst reservoir. This study’s physical modeling test simulates observed field data and is performed using a high-resolution and high-fidelity 3D modeling system. Inversion results obtained by the proposed and conventional methods are compared. Physical modeling and a field data application show that the adopted impedance inversion method improves the karst location estimation and the acoustic impedance within the voids.


Minerals ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 293
Author(s):  
Wei Tian ◽  
Xiaomin Li ◽  
Lei Wang

Disparities between fold amplitude (A) and intrusion thickness (Hsill) are critical in identifying elastic or inelastic deformation in a forced fold. However, accurate measurements of these two parameters are challenging because of the limit in separability and detectability of the seismic data. We combined wireline data and 3-D seismic data from the TZ-47 exploring area in the Tarim Basin, Northwest China, to accurately constrain the fold amplitude and total thickness of sills that induced roof uplift in the terrain. Results from the measurement show that the forced fold amplitude is 155.0 m. After decompaction, the original forced fold amplitude in the area penetrated by the well T47 ranged from 159.9 to 225.8 m, which overlaps the total thickness of the stack of sills recovered by seismic method (171.4 m) and well log method (181.0 m). Therefore, the fold amplitude at T47 area is likely to be elastic. In contrast, the outer area of the TZ-47 forced fold is characterized by shear-style deformation, indicating inelastic deformation at the marginal area. It is suggested that interbedded limestone layers would play an important role in strengthening the roof layers, preventing inelastic deformation during the emplacement of intrusive magma.


2018 ◽  
Vol 36 (4) ◽  
pp. 801-819 ◽  
Author(s):  
Shuangfeng Zhao ◽  
Wen Chen ◽  
Zhenhong Wang ◽  
Ting Li ◽  
Hongxing Wei ◽  
...  

The condensate gas reservoirs of the Jurassic Ahe Formation in the Dibei area of the Tarim Basin, northwest China are typical tight sandstone gas reservoirs and contain abundant resources. However, the hydrocarbon sources and reservoir accumulation mechanism remain debated. Here the distribution and geochemistry of fluids in the Ahe gas reservoirs are used to investigate the formation of the hydrocarbon reservoirs, including the history of hydrocarbon generation, trap development, and reservoir evolution. Carbon isotopic analyses show that the oil and natural gas of the Ahe Formation originated from different sources. The natural gas was derived from Jurassic coal measure source rocks, whereas the oil has mixed sources of Lower Triassic lacustrine source rocks and minor amounts of coal-derived oil from Jurassic coal measure source rocks. The geochemistry of light hydrocarbon components and n-alkanes shows that the early accumulated oil was later altered by infilling gas due to gas washing. Consequently, n-alkanes in the oil are scarce, whereas naphthenic and aromatic hydrocarbons with the same carbon numbers are relatively abundant. The fluids in the Ahe Formation gas reservoirs have an unusual distribution, where oil is distributed above gas and water is locally produced from the middle of some gas reservoirs. The geochemical characteristics of the fluids show that this anomalous distribution was closely related to the dynamic accumulation of oil and gas. The period of reservoir densification occurred between the two stages of oil and gas accumulation, which led to the early accumulated oil and part of the residual formation water being trapped in the tight reservoir. After later gas filling into the reservoir, the fluids could not undergo gravity differentiation, which accounts for the anomalous distribution of fluids in the Ahe Formation.


2013 ◽  
Vol 87 (2) ◽  
pp. 467-485 ◽  
Author(s):  
CHEN Yongquan ◽  
ZHOU Xinyuan ◽  
JIANG Shaoyong ◽  
ZHAO Kuidong

Sign in / Sign up

Export Citation Format

Share Document