Stress state and fluid pressure analyses using ultramafic dykes and calcite veins, SW Iran

2017 ◽  
Vol 10 (5) ◽  
Author(s):  
Babak Samani ◽  
Amir Pirooz Kolahi-Azar
2020 ◽  
Author(s):  
Carolyn Boulton ◽  
Marcel Mizera ◽  
Maartje Hamers ◽  
Inigo Müller ◽  
Martin Ziegler ◽  
...  

<p>The Hungaroa Fault Zone (HFZ), an inactive thrust fault along the Hikurangi Subduction Margin, accommodated large displacements (~4–10 km) at the onset of subduction in the early Miocene. Within a 40 m-wide high-strain fault core, calcareous mudstones and marls display evidence for mixed-mode viscous flow and brittle fracture, including: discrete faults; extensional veins containing stretched calcite fibers; shear veins with calcite slickenfibers; calcite foliation-boudinage structures; calcite pressure fringes; dark dissolution seams; stylolites; embayed calcite grains; and an anastomosing phyllosilicate foliation.</p><p>Multiple observations indicate a heterogeneous stress state within the fault core. Detailed optical and electron backscatter diffraction-based texture analysis of syntectonic calcite veins and isoclinally folded limestone layers within the fault core reveal that calcite grains have experienced intracrystalline plasticity and interface mobility, and local subgrain development and dynamic recrystallisation. The recrystallized grain size in two calcite veins of 6.0±3.9 µm (n=1339; 1SD; HFZ-H4-5.2m_A;) and 7.2±4.2µm (n=406; 1SD; HFZ-H4-19.9m) indicate high differential stresses (~76–134 MPa). Hydrothermal friction experiments on a foliated, calcareous mudstone yield a friction coefficient of μ≈0.35. Using this friction coefficient in the Mohr-Coulomb failure criterion yields a maximum differential stress of 55 MPa at 4 km depth, assuming a minimum principal stress equal to the vertical stress, an average sediment density of 2350 kg/m<sup>3</sup>, and hydrostatic pore fluid pressure. Interestingly, calcareous microfossils within the foliated mudstone matrix are undeformed. Moreover, calcite veins are oriented both parallel to and highly oblique to the foliation, indicating spatial and/or temporal variations in the maximum principle stress azimuth.</p><p>To further constrain HFZ deformation conditions, clumped isotope geothermometry was performed on six syntectonic calcite veins, yielding formation temperatures of 79.3±19.9°C (95% confidence interval). These temperatures are well below those at which dynamic recrystallisation of calcite is anticipated and exclude shear heating and the migration of hotter fluids as an explanation for dynamic recrystallisation of calcite at shallow crustal levels (<5 km depth).</p><p>Our results indicate that: (1) stresses are spatiotemporally heterogeneous in crustal fault zones containing mixtures of competent and incompetent minerals; (2) heterogeneous deformation mechanisms, including frictional sliding, pressure solution, dynamic recrystallization, and mixed-mode fracturing accommodate slip in shallow crustal fault zones; and (3) brittle fractures play a pivotal role in fault zone deformation by providing fluid pathways that promote fluid-enhanced recovery and dynamic recrystallisation in the deforming calcite at remarkably low temperatures. Together, field geology, microscopy, and clumped isotope geothermometry provide a powerful method for constraining the multiscale slip behavior of large-displacement fault zones.</p>


2021 ◽  
Author(s):  
Ivar Stefansson ◽  
Eirik Keilegavlen ◽  
Inga Berre

<p>In addition to significantly impacting flow properties, fractures may deform and propagate due to changes in the stress state. Such stress changes may e.g. be caused by changes in fluid pressure or rock temperature. Accounting for all interacting processes and structures leads to a tightly coupled and highly complex system.</p><p>We apply a mixed-dimensional model explicitly accounting for both rock matrix and fractures, the latter as two-dimensional objects. This framework enables tailored modeling in the different parts of the domain. We impose conservation of mass and energy in both fractures and matrix and conservation of momentum in the matrix. At the fractures, we impose contact mechanics relations and propagation criteria based on the local stress state. Coupling between fractures and matrix is formulated as interdimensional fluid and heat fluxes and displacement at the two fracture surfaces.</p><p>We demonstrate the model through three-dimensional transient simulations focusing on process-structure interaction. That is, we investigate the interplay between thermo-hydraulic processes and fracture deformation, including propagation of pre-existing fractures.</p>


2020 ◽  
Vol 224 (2) ◽  
pp. 1464-1475
Author(s):  
Laure Duboeuf ◽  
Louis De Barros ◽  
Maria Kakurina ◽  
Yves Guglielmi ◽  
Frederic Cappa ◽  
...  

SUMMARY Fluid injections can trigger seismicity even on faults that are not optimally oriented for reactivation, suggesting either sufficiently large fluid pressure or local stress perturbations. Understanding how stress field may be perturbed during fluid injections is crucial in assessing the risk of induced seismicity and the efficiency of deep fluid stimulation projects. Here, we focus on a series of in situ decametric experiments of fluid-induced seismicity, performed at 280 m depth in an underground gallery, while synchronously monitoring the fluid pressure and the activated fractures movements. During the injections, seismicity occurred on existing natural fractures and bedding planes that are misoriented to slip relative to the background stress state, which was determined from the joint inversion of downhole fluid pressure and mechanical displacements measured at the injection. We then compare this background stress with the one estimated from the inversion of earthquake focal mechanisms. We find significant differences in the orientation of the stress tensor components, thus highlighting local perturbations. After discussing the influence of the gallery, the pore pressure variation and the geology, we show that the significant stress perturbations induced by the aseismic deformation (which represents more than 96 per cent of the total deformation) trigger the seismic reactivation of fractures with different orientations.


2020 ◽  
Author(s):  
Ismay Vénice Akker ◽  
Christoph E. Schrank ◽  
Michael W.M. Jones ◽  
Cameron M. Kewish ◽  
Alfons Berger ◽  
...  

<p>In plate-convergent settings, fluid-saturated sediments dehydrate during subduction. The sediments are subsequently accreted to the upper plate. Along their dehydration-deformation path, the initial unconsolidated soft marine sediments become thick, foliated, impermeable meta-sedimentary sequences. Fluid flow through such ‘non’-porous low-permeability rocks is concentrated in fracture networks, ranging from the mm- to the km-scale. We study the interplay between ductile and brittle deformation processes and fluid flow by investigating calcite veins in slates from the exhumed European Alpine accretionary wedge across scales (µm to km). These slates experienced peak metamorphic temperatures between 200°C and 330°C and represent the transition between the upper aseismic and seismic zone. With the use of Synchrotron X-ray Fluorescence Microscopy (SXFM), we investigate the slates by visualizing trace-element distributions. This technique shows that alternating cycles of slow pressure-dissolution processes and brittle fracturing persist over long time scales. At the micron-scale, pressure solution of the initial carbonate-rich slates is indicated by an enrichment of newly recrystallized phyllosilicates on cleavage planes and in pressure shadows. These ductile deformation features are mutually overprinted by calcite veins (aperture 10 µm), which are nicely visualized with Sr-SXFM maps. Increasing compaction and recrystallization in the slate-rich matrix leads to progressed dehydration resulting in an increased pore fluid pressure and subsequent hydrofracturing. The micron-sized fractures are immediately filled in with minerals, which are oversaturated at that time in the fluid, resulting in the formation of (i) micron-veinlets. Micron-veinlets collect (ii) into mm-cm sized veins, which themselves form (iii) vein arrays and (iv) mega-arrays, respectively at the 50-100 m and 300-400 m scale. This upscaling of fluid pathways indicates a localised fluid transport through the accretionary wedge, which has important implications for the understanding of the mechanical stability of the accretionary wedge and related seismic activity.</p>


2015 ◽  
Vol 31 (1) ◽  
pp. 20-30 ◽  
Author(s):  
William S. Helton ◽  
Katharina Näswall

Conscious appraisals of stress, or stress states, are an important aspect of human performance. This article presents evidence supporting the validity and measurement characteristics of a short multidimensional self-report measure of stress state, the Short Stress State Questionnaire (SSSQ; Helton, 2004 ). The SSSQ measures task engagement, distress, and worry. A confirmatory factor analysis of the SSSQ using data pooled from multiple samples suggests the SSSQ does have a three factor structure and post-task changes are not due to changes in factor structure, but to mean level changes (state changes). In addition, the SSSQ demonstrates sensitivity to task stressors in line with hypotheses. Different task conditions elicited unique patterns of stress state on the three factors of the SSSQ in line with prior predictions. The 24-item SSSQ is a valid measure of stress state which may be useful to researchers interested in conscious appraisals of task-related stress.


2001 ◽  
Vol 21 (3) ◽  
pp. 222-230 ◽  
Author(s):  
Rolf K. Reed ◽  
Ansgar Berg ◽  
Eli-Anne B. Gjerde ◽  
Kristofer Rubin

Sign in / Sign up

Export Citation Format

Share Document