scholarly journals Correction to: Late Holocene palaeovegetational and environmental changes inferred from organic geochemical proxies in sediments from Pookot Lake, southern India

2019 ◽  
Vol 12 (24) ◽  
Author(s):  
Sandeep Kizhur ◽  
Rajasekhariah Shankar ◽  
Anish Kumar Warrier ◽  
Madhusudan G. Yadava ◽  
Rengaswamy Ramesh ◽  
...  
2019 ◽  
Vol 12 (20) ◽  
Author(s):  
Sandeep Kizhur ◽  
Rajasekhariah Shankar ◽  
Anish Kumar Warrier ◽  
Madhusudan G. Yadava ◽  
Rengaswamy Ramesh ◽  
...  

The Holocene ◽  
2021 ◽  
pp. 095968362110191
Author(s):  
Luminița Preoteasa ◽  
Alfred Vespremeanu-Stroe ◽  
Anca Dan ◽  
Laurențiu Țuțuianu ◽  
Cristian Panaiotu ◽  
...  

This paper documents the Late-Holocene environmental changes and human presence in the northern Danube delta using a multidisciplinary approach that combines geoscientific data with archaeological findings, historical texts, and maps. It follows the formation and progression of the Chilia distributary and the reconfiguration of socioeconomic activities. Sedimentary facies identified on five new cores by changes in texture properties, magnetic susceptibility, geochemistry, and macro- and microfauna composition together with the newly obtained chronology constrain the complex evolution of the Chilia branch as filling in a long-lasting bay and then of a giant lagoon (Thiagola) which covered most of the northern delta since the Old Danube lobe inception (ca. 7500 yrs BP) till modern Chilia development. It initiated during the Greek Antiquity (ca. 2500 yrs ar BP) at the delta apex, while in Roman times (ca. 1800 yrs BP) it pursued its slow flowing into the vast Thiagola Lagoon. The most dramatic transformations occurred in the last 800 years when the river passed east of the Chilia promontory, rapidly went through the present-day Matița-Merhei basin (several decades), and created its first open-sea outlet. Solid discharge increased in two distinct periods, once in the Middle Ages (ca. 750 yrs BP) and then in the Modern Period (ca. 150 yrs BP) due to human-induced land-use changes in the Danube watershed. The chronology of the cultural remains on the pre-deltaic Chilia promontory and the multiproxy analysis of a sediment core retrieved nearby downstream suggest the terrestrial connection of the island with the mainland in ancient times. The hitherto contended issue of the old Thiagola Lagoon and its location are redefined here, as are the original identifications of ancient and medieval toponyms and hydronyms, especially for Chilia-Licostomo, Byzantine, Genoese, Moldavian, Ottoman, and Russian trading point of great importance in the political and economic history of the Black Sea and neighboring regions.


2021 ◽  
Author(s):  
John Greenlee ◽  
Silas Dean ◽  
Nicolas Waldmann

<p>This study aims to reconstruct the paleoenvironmental and climatic conditions affecting the Levantine corridor during the early Pliocene. For the purpose of this study, a ~20 m continuous core sequence was retrieved out of the ~200 m long, tilted Erk el Ahmar sequence previously dated by cosmogenic isotopes to ~3.5 Ma. The record include intercalating units consisting of sands, silts, and clays that were sampled in high resolution in order to analyze a variety of sedimentological and geochemical proxies of past climate and environmental changes. We present new preliminary, high-resolution sedimentological (laser diffraction granulometry), petrophysical (magnetic susceptibility) and compositional (X-ray fluorescence) data along with accompanying statistical analysis performed with an advanced suite of data-science tools. These results reveal new cycles of environmental change in the area, which appears to be orbitally controlled, and include dramatic changes also indicated by discrete strata of fossil fragments. Moreover, cycles of deposition can also provide hints on the major hydrological controlling mechanisms. This project provides new light into favorable conditions for the subsistence of perennial lake environments in the Levantine Corridor, which in turn may have facilitated faunal migration between Africa and Eurasia.</p>


2020 ◽  
Author(s):  
Martin Klug ◽  
Karl Fabian ◽  
Jochen Knies ◽  
Valérie Bellec ◽  
Leif Rise

<p>Holocene climate variability and environmental changes have been studied using a sediment record from the Barents Sea with focus on the spatio-temporal evolution of bio-productivity and terrestrial sediment deposition in response to changes of climate and regional oceanography. From a 3 m long sediment core recovered in the South-Eastern Barents Sea at 72.5°N 32.5°E u-channels were extracted and stepwise demagnetized and measured for their natural remanent magnetization (NRM) and anhysteretic remanent magnetization (ARM) at the cryogenic magnetometer facility at the Geological Survey of Norway. The u-channel measurements at 3 mm resolution allow the reconstruction of palaeoinclination, relative declination and relative palaeointensity. Comparison of these parameters to FENNOSTACK (Snowball et al., 2007) and EGLACOM-SVAIS (Sagnotti et al., 2011) establishes a robust age model for the sediment sequence which otherwise contains little datable material. We applied statistical factor analysis as centred logratio (clr) transformation to reduce dimensionality of the XRF data and compare changes in high-resolution magnetic susceptibility, wet bulk density and XRF elemental composition with changes of climate proxies in other North Atlantic sedimentary records.</p><p>Based on the new chronostratigraphic framework changes of inorganic and organic proxies at long-term and sub-millennial scale resolve the temperature variability throughout the Holocene. Calcium content changes are related to regional bio-productivity changes in response to surface temperature changes with a pronounced deterioration at the beginning of the Neoglaciation and gradual enhancement during the late Holocene. Besides palaeoclimatic responses, the results offer the opportunity to study sediment transport and deposition during the regional deglaciation and mid-Holocene glacier growth in northwestern Fennoscandia. The temporal changes of the regional oceanography and the variability of marine palaeoproductivity in the South-Eastern Barents Sea indicate an active interplay between the North Atlantic Current (NAC) and the Norwegian Coastal Current (NCC) during the early Holocene, a predominance of the NCC during middle Holocene and a re-amplification of the NAC during the late Holocene. Comparison to other records from the Nordic Seas enables the reconstruction of responses and the vulnerability of this arctic marine ecosystem to past climate variations and may help to estimate upcoming responses to recent and future climate changes.</p><p> </p><p>References:</p><p>Snowball, I., L. Zillén, A. Ojala, T. Saarinen, and P. Sandgren (2007), FENNOSTACK and FENNORPIS: Varve dated Holocene palaeomagnetic secular variation and relative palaeointensity stacks for Fennoscandia, Earth and Planetary Science Letters, 255, (1-2), 106–116</p><p>Sagnotti, L., P. Macrì, R. Lucchi, M. Rebesco, and A. Camerlenghi (2011), A Holocene paleosecular variation record from the northwestern Barents Sea continental margin, Geochemistry, Geophysics, Geosystems, 12, (11)</p>


Sign in / Sign up

Export Citation Format

Share Document