Analysis of the distribution characteristics and laws of in situ stress in China’s coal mines

2020 ◽  
Vol 13 (12) ◽  
Author(s):  
Hongjun Guo ◽  
Ming Ji ◽  
Weisheng Zhao
2020 ◽  
Author(s):  
Donghui Yang ◽  
Zhangxuan Ning ◽  
Yongming Li ◽  
Zhaoheng Lv ◽  
Yuandong Qiao

Abstract For non-directional drilling cores, the sample selection and test method for Kaiser effect (KE) in-situ stress measurement were proposed, and the magnitude and direction of its principal stresses were theoretically derived. Based on this method, the KE of 423 samples in Burtai and Baode coal mines in northern Ordos Basin (NOB) were tested. The results show that σH, σh and σv vary with depth and location, and their values increase with increasing of depths. Generally, horizontal stresses play a leading role. There are main stress regimes in NOB: σH > σh > σv (Burtai, <172m; Baode, <170m) and σH > σv > σh (Burtai, 170-800 m; Baode, 170-400 m), and the σv > σH > σh stress regime is mainly distributed in moderately deep to deep coal mines. For rock masses with a depth of 350m, k ((σH + σh) / 2σv) tends to 1, indicating that deep critical state will gradually emerge. The test results were compared with those of overcoring method (OC), elastic strain recovery (ASR) and micro-hydraulic fracturing (HF). The relative errors of σH, σh and σv are 14.90%, 19.67%, 15.47% (Burtai) and 10.74%, 22.76%, 19.97% (Baode), and they are all within a reasonable range required by the project, which verifies the reliability of KE method. The dominant orientation of σH (Burtai, NE-NNE; Baode, NEE) was obtained by using paleomagnetic technology, which is consistent with that (NE-NEE) of earthquake focal mechanisms in this area. Based on Byerlee-Anderson theory, the stress accumulation level of mine rock mass was discussed. Under dry rocks or hydrostatic pressure rocks, the friction coefficient of faults is both low, which is less than the lower limit (0.6) of strike-slip faults slip, indicating that the fracture stress with a low level around the study area is lower than the friction limit stress. The stress accumulation level in Baode mine is slightly larger than that in Burtai mine.


2019 ◽  
Vol 9 (18) ◽  
pp. 3742 ◽  
Author(s):  
Bin Liu ◽  
Yuanguang Zhu ◽  
Quansheng Liu ◽  
Xuewei Liu

A novel in situ stress monitoring method, based on rheological stress recovery (RSR) theory, was proposed to monitor the stress of rock mass in deep underground engineering. The RSR theory indicates that the tiny hole in the rock can close gradually after it was drilled due to the rheology characteristic, during which process the stress that existed in the rock can be monitored in real-time. Then, a three-dimensional stress monitoring sensor, based on the vibrating wire technique, was developed for in field measurement. Furthermore, the in-field monitoring procedures for the proposed technique are introduced, including hole drilling, sensor installation, grouting, and data acquisition. Finally, two in situ tests were carried out on deep roadways at the Pingdingshan (PDS) No. 1 and No. 11 coal mines to verify the feasibility and reliability of the proposed technique. The relationship between the recovery stress and the time for the six sensor faces are discussed and the final stable values are calculated. The in situ stress components of rock masses under geodetic coordinates were calculated via the coordinate transformation equation and the results are consistent with the in situ stress data by different methods, which verified the effectiveness of the proposed method.


2017 ◽  
Vol 2017 ◽  
pp. 1-10 ◽  
Author(s):  
Bangxiang Li ◽  
Yong Li ◽  
Weishen Zhu ◽  
Chao Li ◽  
Zhenxing Dong

In this paper, a series of numerical simulations are performed to analyze the in situ stress distribution characteristics of the rock mass near different slope angles hillslope surfaces, which are subjected to the vertical gravity stress and different horizontal lateral stresses and the influence which the in situ stress distribution characteristics of 45° hillslope to the integral stability of surrounding rock mass when an underground cavern is excavated considering three different horizontal distances from the underground cavern to the slope surface. It can be concluded from the numerical results that different slope angles and horizontal lateral stresses have a strong impact on the in situ stress distribution and the integral surrounding rock mass stability of the underground cavern when the horizontal distance from the underground cavern to the slope surface is approximately 100 m to 200 m. The relevant results would provide some important constructive suggestions to the engineering site selection and optimization of large-scale underground caverns in hydropower stations.


Sign in / Sign up

Export Citation Format

Share Document