scholarly journals Subsurface structures and conceptual hydrothermal model of the area lying between Quseir and Safaga area, Red Sea Coast, Egypt

2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Haby Salaheldin Mohamed

AbstractThe study area is located in the Quseir–Safaga area of the Egyptian Red Sea Coast. This location considered one of the most promising areas for touristic villages depending on groundwater domestic uses as well as geothermal energy. The geothermal energy is considered one of the promising sources in the studied area. Nevertheless, few attempts have been carried out to evaluate the geothermal setting of the area. The present study aims to throw more light on studying the predominant structures in the area and their relation with geothermal manifestations, as well as defining the hydrothermal system type at the study area. Achieving this goal is dependent on using aeromagnetic data in the form of reduced to northern Pole (RTP) anomalies. These data were subjected to different techniques of processing and interpretation through both qualitative and quantitative analyses. Two-dimensional (2D) modeling of aeromagnetic data has been used to simulate the subsurface structure configuration along some selected profiles trending in NW-SE and E-W directions. In addition, a conceptual model of the hydrothermal system was built based on geophysical results of the aeromagnetic data analysis and processed numerically to obtain a 2D hydrothermal model that contains all simplifications and assumptions made on the conceptual model. The HYDROTHERM Interactive (HTI) program version 3 was used for two-dimensional simulation in the study area to study the temperature and pressure distributions beneath the study area. The results of the study showed that the depth to basement from the ground surface ranges from 20 to 1200 m. The hydrothermal simulation in the area indicated that the origin of thermal water is due to high heat flow and deep groundwater circulation controlled by structures in the subsurface reservoir. Under the thermal water, the water speeds up and flows through the fractures and faults. In general, the high heat flow in the Eastern Desert is associated with shallow basement depths. Thus, the modeled hydrothermal system is considered a dynamic type.

Terra Nova ◽  
2021 ◽  
Author(s):  
Rosa Maria Prol‐Ledesma ◽  
Juan Luis Carrillo De La Cruz ◽  
Marco‐Antonio Torres‐Vera ◽  
Alejandro Estradas‐Romero

1985 ◽  
Vol 22 (3) ◽  
pp. 416-421 ◽  
Author(s):  
J. H. Sass ◽  
L. A. Lawver ◽  
R. J. Munroe

Heat flow was measured at nine sites in crystalline and sedimentary rocks of southeastern Alaska. Seven of the sites, located between 115 and 155 km landward of the Queen Charlotte – Fairweather transform fault, have an average heat flow of 59 ± 6 mW m−2. This value is significantly higher than the mean of 42 mW m−2 in the coastal provinces between Cape Mendocino and the Queen Charlotte Islands, to the south, and is lower than the mean of 72 ± 2 mW m−2 for 81 values within 100 km of the San Andreas transform fault, even farther south. This intermediate value suggests the absence of significant heat sinks associated with Cenozoic subduction and of heat sources related to either late Cenozoic tectono-magmatic events or significant shear-strain heating. At Warm Springs Bay, 75 km from the plate boundary, an anomalously high heat flow of 150 mW m−2 can most plausibly be ascribed to the thermal spring activity from which its name is derived. At Quartz Hill, 240 km landward of the plate boundary, a value of 115 mW m−2 might indicate a transition to a province of high heat flow resulting from late Tertiary and Quaternary extension and volcanism.


1996 ◽  
Vol 23 (21) ◽  
pp. 3027-3030 ◽  
Author(s):  
L. Guillou-Frottier ◽  
C. Jaupart ◽  
J. C. Mareschal ◽  
C. Gariépy ◽  
G. Bienfait ◽  
...  

Minerals ◽  
2020 ◽  
Vol 10 (7) ◽  
pp. 635
Author(s):  
Liam A. Bullock ◽  
John Parnell ◽  
Joseph G.T. Armstrong ◽  
Magali Perez ◽  
Sam Spinks

Gold grains, up to 40 μm in size and containing variable percentages of admixed platinum, have been identified in coals from the Leinster Coalfield, Castlecomer, SE Ireland, for the first time. Gold mineralisation occurs in sideritic nodules in coals and in association with pyrite and anomalous selenium content. Mineralisation here may have reflected very high heat flow in foreland basins north of the emerging Variscan orogenic front, responsible for gold occurrence in the South Wales Coalfield. At Castlecomer, gold (–platinum) is attributed to precipitation with replacive pyrite and selenium from groundwaters at redox interfaces, such as siderite nodules. Pyrite in the cores of the nodules indicates fluid ingress. The underlying Caledonian basement bedrock is mineralised by gold, and thus likely provided a source for gold. The combination of the gold occurrences in coal in Castlecomer and in South Wales, proximal to the Variscan orogenic front, suggests that these coals along the front could comprise an exploration target for low-temperature concentrations of precious metals.


2011 ◽  
Vol 11 (6) ◽  
pp. 1599-1603 ◽  
Author(s):  
E. Dologlou

Abstract. The seismicity of the last 15 years in the Aegean Sea revealed that earthquakes (Mw > 5) with epicentres falling within the Sporades basin and the confined area north of Samos island were preceded by electric seismic signals (SES) with a remarkably long lead time. A possible explanation of this behaviour by means of specific tectonics and geodynamics which characterise these two regions, such as a significant small crustal thickness and a high heat flow rate, has been attempted. New data seem to strengthen the above hypothesis.


Nature ◽  
1984 ◽  
Vol 307 (5946) ◽  
pp. 32-36 ◽  
Author(s):  
Jean Francheteau ◽  
Claude Jaupart ◽  
Shen Xian Jie ◽  
Kang Wen-Hua ◽  
Lee De-Lu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document