Assessment the climate change impact on the future evapotranspiration and flows from a semi-arid environment

2020 ◽  
Vol 13 (2) ◽  
Author(s):  
Salah Ouhamdouch ◽  
Mohammed Bahir ◽  
Driss Ouazar ◽  
Abdelmalek Goumih ◽  
Kamel Zouari
2010 ◽  
Vol 7 (3) ◽  
pp. 3159-3188 ◽  
Author(s):  
Y. Huang ◽  
W. F. Yang ◽  
L. Chen

Abstract. Doubtlessly, global climate change and its impacts have caught increasing attention from all sectors of the society world-widely. Among all those affected aspects, hydrological circle has been found rather sensitive to climate change. Climate change, either as the result or as the driving-force, has intensified the uneven distribution of water resources in the Changjiang (Yangtze) River basin, China. In turn, drought and flooding problems have been aggravated which has brought new challenges to current hydraulic works such as dike or reservoirs which were designed and constructed based on the historical hydrological characteristics, yet has been significantly changed due to climate change impact. Thus, it is necessary to consider the climate change impacts in basin planning and water resources management, currently and in the future. To serve such purpose, research has been carried out on climate change impact on water resources (and hydrological circle) in Changjiang River. The paper presents the main findings of the research, including main findings from analysis of historical hydro-meteorological data in Changjiang River, and runoff change trends in the future using temperature and precipitation predictions calculated based on different emission scenarios of the 24 Global Climate Modes (GCMs) which has been used in the 4th IPCC assessment report. In this research, two types of macro-scope statistical and hydrological models were developed to simulate runoff prediction. Concerning the change trends obtained from the historical data and the projection from GCMs results, the trend of changes in water resources impacted by climate change was analyzed for Changjiang River. Uncertainty of using the models and data were as well analyzed.


Atmosphere ◽  
2019 ◽  
Vol 10 (8) ◽  
pp. 453 ◽  
Author(s):  
Pan ◽  
Xu ◽  
Xuan ◽  
Gu ◽  
Bai

Evapotranspiration (ET) is an important element in the water and energy cycle. Potential evapotranspiration (PET) is an important measurement of ET. Its accuracy has significant influence on agricultural water management, irrigation planning, and hydrological modelling. However, whether current PET models are applicable under climate change or not, is still a question. In this study, five frequently used PET models were chosen, including one combination model (the FAO Penman-Monteith model, FAO-PM), two temperature-based models (the Blaney-Criddle and the Hargreaves models) and two radiation-based models (the Makkink and the Priestley-Taylor models), to estimate their appropriateness in the historical and future periods under climate change impact on the Yarlung Zangbo river basin, China. Bias correction methods were not only applied to the temperature output of Global Climate Models (GCMs), but also for radiation, humidity, and wind speed. It was demonstrated that the results from the Blaney-Criddle and Makkink models provided better agreement with the PET obtained by the FAO-PM model in the historical period. In the future period, monthly PET estimated by all five models show positive trends. The changes of PET under RCP8.5 are much higher than under RCP2.6. The radiation-based models show better appropriateness than the temperature-based models in the future, as the root mean square error (RMSE) value of the former models is almost half of the latter models. The radiation-based models are recommended for use to estimate PET under climate change in the Yarlung Zangbo river basin.


Author(s):  
Asif M. BHATTI ◽  
Toshio KOIKE ◽  
Patricia Ann JARANILLA-SANCHEZ ◽  
Mohamed RASMY ◽  
Kohei YOSHIMURA ◽  
...  

2007 ◽  
Vol 11 (3) ◽  
pp. 1191-1205 ◽  
Author(s):  
B. Schaefli ◽  
B. Hingray ◽  
A. Musy

Abstract. This paper addresses two major challenges in climate change impact analysis on water resources systems: (i) incorporation of a large range of potential climate change scenarios and (ii) quantification of related modelling uncertainties. The methodology of climate change impact modelling is developed and illustrated through application to a hydropower plant in the Swiss Alps that uses the discharge of a highly glacierised catchment. The potential climate change impacts are analysed in terms of system performance for the control period (1961–1990) and for the future period (2070–2099) under a range of climate change scenarios. The system performance is simulated through a set of four model types, including the production of regional climate change scenarios based on global-mean warming scenarios, the corresponding discharge model, the model of glacier surface evolution and the hydropower management model. The modelling uncertainties inherent in each model type are characterised and quantified separately. The overall modelling uncertainty is simulated through Monte Carlo simulations of the system behaviour for the control and the future period. The results obtained for both periods lead to the conclusion that potential climate change has a statistically significant negative impact on the system performance.


2020 ◽  
Vol 723 ◽  
pp. 138110
Author(s):  
J. Valdes-Abellan ◽  
M.A. Pardo ◽  
A. Jodar-Abellan ◽  
C. Pla ◽  
M. Fernandez-Mejuto

Sign in / Sign up

Export Citation Format

Share Document