Predicting groundwater level fluctuations under climate change scenarios for Tasuj plain, Iran

2021 ◽  
Vol 14 (2) ◽  
Author(s):  
Babak Ghazi ◽  
Esmaeil Jeihouni ◽  
Zahra Kalantari
Water ◽  
2020 ◽  
Vol 12 (9) ◽  
pp. 2336
Author(s):  
Balázs Trásy ◽  
Norbert Magyar ◽  
Tímea Havril ◽  
József Kovács ◽  
Tamás Garamhegyi

Since groundwater is a major source of water for drinking and for industrial and irrigation uses, the identification of the environmental processes determining groundwater level fluctuation is potentially a matter of great consequence, especially in light of the fact that the frequency of extreme climate events may be expected to increase, causing changes in groundwater recharge systems. In the recent study, data measured at a frequency of one hour were collected from the Szigetköz, an inland delta of the Danube. These were then used to determine the presence, or not, and magnitude of any hidden environmental background factors that may be causing groundwater level fluctuations. Through the application of dynamic factor analysis, it was revealed that changes in groundwater level are mainly determined by (i) the water level of neighboring rivers and (ii) evapotranspiration. The intensity of these factors may also be estimated spatially. If the background factors determined by dynamic factor analysis do indeed figure in the linear model as variables, then the time series of groundwater levels can be said to have been accurately estimated with the use of linear regression. The accuracy of the estimate is indicated by the fact that adjusted coefficient of determination exceeds 0.9 in 80% of the wells. The results, via an enhanced understanding of the reasons for changes in the fluctuation of groundwater, could assist in the development of sustainable water management and irrigation strategies and the preparation for varying potential climate change scenarios.


2012 ◽  
Vol 16 (5) ◽  
pp. 1517-1531 ◽  
Author(s):  
J. Dams ◽  
E. Salvadore ◽  
T. Van Daele ◽  
V. Ntegeka ◽  
P. Willems ◽  
...  

Abstract. Given the importance of groundwater for food production and drinking water supply, but also for the survival of groundwater dependent terrestrial ecosystems (GWDTEs) it is essential to assess the impact of climate change on this freshwater resource. In this paper we study with high temporal and spatial resolution the impact of 28 climate change scenarios on the groundwater system of a lowland catchment in Belgium. Our results show for the scenario period 2070–2101 compared with the reference period 1960–1991, a change in annual groundwater recharge between −20% and +7%. On average annual groundwater recharge decreases 7%. In most scenarios the recharge increases during winter but decreases during summer. The altered recharge patterns cause the groundwater level to decrease significantly from September to January. On average the groundwater level decreases about 7 cm with a standard deviation between the scenarios of 5 cm. Groundwater levels in interfluves and upstream areas are more sensitive to climate change than groundwater levels in the river valley. Groundwater discharge to GWDTEs is expected to decrease during late summer and autumn as much as 10%, though the discharge remains at reference-period level during winter and early spring. As GWDTEs are strongly influenced by temporal dynamics of the groundwater system, close monitoring of groundwater and implementation of adaptive management measures are required to prevent ecological loss.


2020 ◽  
Vol 10 ◽  
pp. 100323 ◽  
Author(s):  
Nagraj S. Patil ◽  
N.L. Chetan ◽  
M. Nataraja ◽  
Surindra Suthar

2021 ◽  
Author(s):  
Amélie Cavelan ◽  
Fabrice Golfier ◽  
Stéfan Colombano ◽  
Noële Enjelvin ◽  
Hossein Davarzani ◽  
...  

<p>Light Non-Aqueous Phase Liquids (LNAPLs) are one of the most important sources of soil and groundwater contamination worldwide. When they infiltrate through the unsaturated zone, part of the LNAPLs remains trapped by capillary forces. The others accumulate above the top of the water table, forming a floating ‘free’ phase able to generate a long-term dissolved LNAPL plume that durably alters the quality of the water resource. Seasonal variations in the groundwater level lead to significant vertical spreading of these light petroleum hydrocarbon contaminants at the capillary fringe, favoring their release into the air and groundwater. In the climate change context, the IPCC predicts an intensification of these groundwater level variations over the next century in response to variations in rainfall intensity and frequency, whose effects are increased by the use of water resources. This context may strongly impact the mobilization of these organic contaminants and their release to the environment. To study these phenomena, it is, therefore, essential to better understand the impact of the groundwater level fluctuation patterns on the LNAPLs mobilization processes. To this end, an original experimental system combining indirect geophysical (complex electrical conductivity, permittivity), in-situ physical-chemical (pH, Eh, temperature), and geochemical measurements was developed at the GISFI station (Homécourt, France). This device allows the assessment and the comparison of the amount and nature of LNAPLs release into the atmosphere and water from contaminated soil during two groundwater level fluctuations scenarios: one corresponding to the ‘actual’ rainfall pattern based on regional climate records; the other based on the predictions of the most extreme IPCC scenario. This study will be conducted at different scales (laboratory decametric columns and 2 m<sup>3</sup> lysimeters) and on soils of different geological complexity. The remobilized hydrocarbons will be collected via suction cups and gas collection chambers as the groundwater table fluctuates and will be regularly analyzed (GC-MS, FTIR). The complementarity of the monitoring methods aims to provide a better understanding of the fate of these organic pollutants at contaminated sites and the evolution of the associated environmental risks in the coming years, under the expected effect of climate change. Preliminary results concerning the hydrocarbon pollution migration through the unsaturated zone and the distribution of the LNAPL will be presented to illustrate the capacity of this new instrumental system.</p><p>This work is partly funded by the DEEPSURF project "Lorraine Université d’Excellence", ANR-15-IDEX-04-LUE".</p>


Water ◽  
2019 ◽  
Vol 11 (5) ◽  
pp. 949 ◽  
Author(s):  
Jiwan Lee ◽  
Chunggil Jung ◽  
Sehoon Kim ◽  
Seongjoon Kim

This study was to evaluate the groundwater-level behavior in Geum River Basin (9645.5 km2) of South Korea with HadGEM3-RA RCP 4.5 and 8.5 climate change scenarios and future groundwater use data using the soil and water assessment tool (SWAT). Before evaluating future groundwater behavior, the SWAT model was calibrated and validated using the daily inflows and storage of two dams (DCD and YDD) in the basin for 11 years (2005–2015), the daily groundwater-level observation data at five locations (JSJS, OCCS, BEMR, CASS, and BYBY), and the daily inflow and storage of three weir locations (SJW, GJW, and BJW) for three years and five months (August 2012 to December 2015). The Nash–Sutcliffe efficiency (NSE) and the coefficient of determination (R2) of two dam inflows was 0.55–0.70 and 0.67–0.75. For the inflows of the three weirs, NSE was 0.57–0.77 and R2 was 0.62–0.81. The average R2 value for the groundwater levels of the five locations ranged from 0.53 to 0.61. After verifying the SWAT for hydrologic components, we evaluated the behavior of future groundwater levels by future climate change scenarios and estimated future ground water use by Korean water vision 2020 based on ground water use monitoring data. The future groundwater-level decreased by −13.0, −5.0, and −9.0 cm at three upstream locations (JSJS, OCCS, and BEMR) among the five groundwater-level observation locations and increased by +3.0 and +1.0 cm at two downstream locations (CASS and BYBY). The future groundwater level was directly affected by the groundwater recharge, which was dependent on the seasonal and spatial precipitations in the basin.


2011 ◽  
Vol 8 (6) ◽  
pp. 10195-10223 ◽  
Author(s):  
J. Dams ◽  
E. Salvadore ◽  
T. Van Daele ◽  
V. Ntegeka ◽  
P. Willems ◽  
...  

Abstract. Given the importance of groundwater for food production and drinking water supply, but also for the survival of groundwater dependent terrestrial ecosystems (GWDTEs) it is essential to assess the impact of climate change on this freshwater resource. In this paper we study with high temporal and spatial resolution the impact of 28 climate change scenarios on the groundwater system of a lowland catchment in Belgium. Our results show for the scenario period 2070–2101 compared with the reference period 1960–1991, a change in annual groundwater recharge between −20% and +7%. On average annual groundwater recharge decreases 7%. Seasonally, in most scenarios the recharge increases during winter but decreases during summer. The altered recharge patterns cause the groundwater level to decrease significantly from September to January. On average the groundwater level decreases about 7 cm with a standard deviation between the scenarios of 5 cm. Groundwater levels in interfluves and upstream areas are more sensitive to climate change than groundwater levels in the river valley. Groundwater discharge to GWDTEs is expected to decrease during late summer and autumn as much as 10%, though the discharge remains at reference-period level during winter and early spring. As GWDTEs are strongly influenced by temporal dynamics of the groundwater system, close monitoring of groundwater and implementation of adaptive management measures are required to prevent ecological loss.


2005 ◽  
Vol 33 (1) ◽  
pp. 185-188 ◽  
Author(s):  
Csilla Farkas ◽  
Roger Randriamampianina ◽  
Juraj Majerčak

Sign in / Sign up

Export Citation Format

Share Document