Assessment of spatiotemporal changes in water contents of landslide zone by geophysical methods: a case study

2021 ◽  
Vol 14 (14) ◽  
Author(s):  
Parisa Imani ◽  
Gang Tian ◽  
Amr Abd EL-Raouf
2004 ◽  
Vol 2 (1) ◽  
pp. 49-63 ◽  
Author(s):  
Carlos Magnavita ◽  
Norbert Schleifer

In the last decades, geophysical methods such as magnetic survey have become a common technique for prospecting archaeological sites. At sub-Saharan archaeological sites, however, magnetic survey and correlated techniques never came into broad use and there are no signs for an immediate change of this situation. This paper examines the magnetic survey undertaken on the Nigerian site of Zilum, a settlement of the Gajiganna Culture (ca 1800-400 BC) located in the Chad Basin and dated to ca 600-400 BC. By means of the present case study, we demonstrate the significance of this particular type of investigation in yielding complementary data for understanding the character of prehistoric settlements. In conclusion, we point out that geophysical methods should play a more important role in modern archaeological field research, as they furnish a class of documentation not achievable by traditional survey and excavation methods, thus creating new perspectives for interpreting the past of African societies.


2018 ◽  
Vol 22 (3) ◽  
pp. 195-204 ◽  
Author(s):  
Sadegh Rezaei ◽  
Issa Shooshpasha ◽  
Hamed Rezaei

Today, geotechnical and geophysical techniques are used for landslide evaluation. Geotechnical methods provide accurate data, but are time consuming and costly. Geophysical techniques, however, are fast and inexpensive, yet their accuracy is lower than that of the geotechnical methods. Therefore, simultaneous use of geotechnical and geophysical methods provides a suitable solution for landslide evaluation. Availability of geotechnical and geophysical data makes it possible to investigate correlation between different parameters. Correlating geotechnical and geophysical parameters ends up lowering field investigation costs and enhancing subsurface survey speed in a landslide zone. In the present study, in order to evaluate Nargeschal landslide in Iran, ambient noise measurement, ERT survey, and geotechnical investigations were used. Once finished with data processing, the data obtained from geotechnical and geophysical investigations were correlated. These included SPT-N – electrical resistivity, soil moisture content – electrical resistivity, and SPT-N – shear wave velocity correlations. The correlations were examined using two methods, namely Spearman’s coefficient test and least square regression analysis. The results obtained from the two methods were in good agreement with one another. The correlations obtained in this study were of moderate to very strong strength and fell in the range of the results of previous studies. Investigation of the results indicated significant influences of ground water on electrical resistivity and soil stiffness on shear wave velocity. Results of this study can be used for soil classification and determination of mechanical and seismic characteristics of soil across various areas.


2021 ◽  
Vol 11 (17) ◽  
pp. 7875
Author(s):  
Vincenzo Sapia ◽  
Valerio Materni ◽  
Federico Florindo ◽  
Marco Marchetti ◽  
Andrea Gasparini ◽  
...  

A multi-parametric approach that involves the use of different geophysical methods coupled with geochemical data allowed us to identify undiscovered archeological burials in a funerary area of the Grotte di Castro Etruscan settlement. In particular, we tested the suitability of the capacitive resistivity method and the presence of Radon in soil for the identification of burials calibrating their outcomes over coincident survey profiles with standard geophysical techniques routinely applied for archaeological prospections. Soil Radon data were acquired both in a grid and along a profile to highlight anomalous gas concentrations, whereas electrical resistivity and ground-penetrating radar measurements were conducted on overlapping profiles to depict the electrical and electromagnetic subsurface distribution. Data integration showed a series of anomalies, suggesting the presence of multiple burials starting from a depth of approximately 1.5 m below the terrain surface. Slight anomalies of Radon in the soil were found to correspond to most of the recovered geophysical ones. Our results pointed out the effectiveness of geophysical method integration in archeological prospecting with the novelty of the joint use of Radon in soil measurements and capacitive resistivity tomography. The latter provided reliable results and can be considered as a standalone technique in archaeological surveys.


2021 ◽  
Vol 40 (6) ◽  
pp. 434-441
Author(s):  
Don White ◽  
Thomas M. Daley ◽  
Björn Paulsson ◽  
William Harbert

Borehole geophysical methods are a key component of subsurface monitoring of geologic CO2 storage sites because boreholes form a locus where geophysical measurements can be compared directly with the controlling geology. Borehole seismic methods, including intrawell, crosswell, and surface-to-borehole acquisition, are useful for site characterization, surface seismic calibration, 2D/3D time-lapse imaging, and microseismic monitoring. Here, we review the most common applications of borehole seismic methods in the context of storage monitoring and consider the role that detailed geophysical simulations can play in answering questions that arise when designing monitoring plans. Case study examples are included from the multitude of CO2 monitoring projects that have demonstrated the utility of borehole seismic methods for this purpose over the last 20 years.


Sign in / Sign up

Export Citation Format

Share Document