Remote Sensing Analysis of Agroforestry in Bathinda and Patiala Districts of Punjab using Sub-pixel Method and Medium Resolution Data

2016 ◽  
Vol 44 (4) ◽  
pp. 657-664 ◽  
Author(s):  
R. H. Rizvi ◽  
Ram Newaj ◽  
P. S. Karmakar ◽  
A. Saxena ◽  
S. K. Dhyani
Author(s):  
Teerapong Panboonyuen ◽  
Kulsawasd Jitkajornwanich ◽  
Siam Lawawirojwong ◽  
Panu Srestasathiern ◽  
Peerapon Vateekul

In remote sensing domain, it is crucial to automatically annotate semantics, e.g., river, building, forest, etc, on the raster images. Deep Convolutional Encoder Decoder (DCED) network is the state-of-the-art semantic segmentation for remotely-sensed images. However, the accuracy is still limited, since the network is not designed for remotely sensed images and the training data in this domain is deficient. In this paper, we aim to propose a novel CNN network for semantic segmentation particularly for remote sensing corpora with three main contributions. First, we propose to apply a recent CNN network call ''Global Convolutional Network (GCN)'', since it can capture different resolutions by extracting multi-scale features from different stages of the network. Also, we further enhance the network by improving its backbone using larger numbers of layers, which is suitable for medium resolution remotely sensed images. Second, ''Channel Attention'' is presented into our network in order to select most discriminative filters (features). Third, ''Domain Specific Transfer Learning'' is introduced to alleviate the scarcity issue by utilizing other remotely sensed corpora with different resolutions as pre-trained data. The experiment was then conducted on two given data sets: ($i$) medium resolution data collected from Landsat-8 satellite and ($ii$) very high resolution data called ''ISPRS Vaihingen Challenge Data Set''. The results show that our networks outperformed DCED in terms of $F1$ for 17.48% and 2.49% on medium and very high resolution corpora, respectively.


Author(s):  
Teerapong Panboonyuen ◽  
Kulsawasd Jitkajornwanich ◽  
Siam Lawawirojwong ◽  
Panu Srestasathiern ◽  
Peerapon Vateekul

In remote sensing domain, it is crucial to annotate semantics, e.g., river, building, forest, etc, on the raster images. Deep Convolutional Encoder Decoder (DCED) network is the state-of-the-art semantic segmentation for remotely-sensed images. However, the accuracy is still limited, since the network is not designed for remotely sensed images and the training data in this domain is deficient. In this paper, we aim to propose a novel CNN for semantic segmentation particularly for remote sensing corpora with three main contributions. First, we propose to apply a recent CNN call ``Global Convolutional Network (GCN)'', since it can capture different resolutions by extracting multi-scale features from different stages of the network. Also, we further enhance the network by improving its backbone using larger numbers of layers, which is suitable for medium resolution remotely sensed images. Second, ``Channel Attention'' is presented into our network in order to select most discriminative filters (features). Third, ``Domain Specific Transfer Learning'' is introduced to alleviate the scarcity issue by utilizing other remotely sensed corpora with different resolutions as pre-trained data. The experiment was then conducted on two given data sets: ($i$) medium resolution data collected from Landsat-8 satellite and ($ii$) very high resolution data called ``ISPRS Vaihingen Challenge Data Set''. The results show that our networks outperformed DCED in terms of $F1$ for 17.48% and 2.49% on medium and very high resolution corpora, respectively.


2018 ◽  
Vol 42 (1) ◽  
pp. 3-23 ◽  
Author(s):  
Roberto S Azzoni ◽  
Davide Fugazza ◽  
Andrea Zerboni ◽  
Antonella Senese ◽  
Carlo D’Agata ◽  
...  

Over the last decades, the expansion of supraglacial debris on worldwide mountain glaciers has been reported. Nevertheless, works dealing with the detection and mapping of supraglacial debris and detailed analyses aimed at identifying the temporal and spatial trends affecting glacier debris cover are still limited. In this study, we used different remote sensing sources to detect and map the supraglacial debris cover, to analyze its evolution, and to assess the potential of different remote-sensed image data. We performed our analyses on the glaciers of Ortles-Cevedale Group (Stelvio Park, Italy), one of the most representative glacierized sectors of the European Alps. High-resolution airborne orthophotos (pixel size 0.5 m × 0.5 m) acquired during the summer season in the years 2003, 2007, and 2012 permitted to map in detail, with an error lower than ±5%, the supraglacial debris cover through a maximum likelihood classification. Our findings suggest that over the period 2003–2012, supraglacial debris cover increased from 16.7% to 30.1% of the total glacier area. On Forni Glacier we extended these quantification thanks to the availability of UAV (Unmanned Aerial Vehicle) orthophotos from 2014 and 2015 (pixel size 0.15 m × 0.15 m): this detailed analysis permitted to confirm debris is increasing on the glacier melting surface (+20.4%) and confirms the requirement of high-resolution data in debris mapping on Alpine glaciers. Finally, we also checked the suitability of medium-resolution Landsat ETM+ data and Sentinel 2 data to map debris in a typical Alpine glaciation scenario where small ice bodies (<0.5 km2) are the majority. The results we obtained suggest that medium-resolution data are not suitable for a detailed description and evaluation of supraglacial debris cover in the Alpine scenario, nevertheless Sentinel 2 proved to be appropriate for a preliminary mapping of the main debris features.


2021 ◽  
Vol 13 (9) ◽  
pp. 1754
Author(s):  
Jonathan Reith ◽  
Gohar Ghazaryan ◽  
Francis Muthoni ◽  
Olena Dubovyk

Monitoring land degradation (LD) to improve the measurement of the sustainable development goal (SDG) 15.3.1 indicator (“proportion of land that is degraded over a total land area”) is key to ensure a more sustainable future. Current frameworks rely on default medium-resolution remote sensing datasets available to assess LD and cannot identify subtle changes at the sub-national scale. This study is the first to adapt local datasets in interplay with high-resolution imagery to monitor the extent of LD in the semiarid Kiteto and Kongwa (KK) districts of Tanzania from 2000–2019. It incorporates freely available datasets such as Landsat time series and customized land cover and uses open-source software and cloud-computing. Further, we compared our results of the LD assessment based on the adopted high-resolution data and methodology (AM) with the default medium-resolution data and methodology (DM) suggested by the United Nations Convention to Combat Desertification. According to AM, 16% of the area in KK districts was degraded during 2000–2015, whereas DM revealed total LD on 70% of the area. Furthermore, based on the AM, overall, 27% of the land was degraded from 2000–2019. To achieve LD neutrality until 2030, spatial planning should focus on hotspot areas and implement sustainable land management practices based on these fine resolution results.


2019 ◽  
Vol 11 (1) ◽  
pp. 83 ◽  
Author(s):  
Teerapong Panboonyuen ◽  
Kulsawasd Jitkajornwanich ◽  
Siam Lawawirojwong ◽  
Panu Srestasathiern ◽  
Peerapon Vateekul

In the remote sensing domain, it is crucial to complete semantic segmentation on the raster images, e.g., river, building, forest, etc., on raster images. A deep convolutional encoder–decoder (DCED) network is the state-of-the-art semantic segmentation method for remotely sensed images. However, the accuracy is still limited, since the network is not designed for remotely sensed images and the training data in this domain is deficient. In this paper, we aim to propose a novel CNN for semantic segmentation particularly for remote sensing corpora with three main contributions. First, we propose applying a recent CNN called a global convolutional network (GCN), since it can capture different resolutions by extracting multi-scale features from different stages of the network. Additionally, we further enhance the network by improving its backbone using larger numbers of layers, which is suitable for medium resolution remotely sensed images. Second, “channel attention” is presented in our network in order to select the most discriminative filters (features). Third, “domain-specific transfer learning” is introduced to alleviate the scarcity issue by utilizing other remotely sensed corpora with different resolutions as pre-trained data. The experiment was then conducted on two given datasets: (i) medium resolution data collected from Landsat-8 satellite and (ii) very high resolution data called the ISPRS Vaihingen Challenge Dataset. The results show that our networks outperformed DCED in terms of F 1 for 17.48% and 2.49% on medium and very high resolution corpora, respectively.


Author(s):  
Teerapong Panboonyuen ◽  
Kulsawasd Jitkajornwanich ◽  
Siam Lawawirojwong ◽  
Panu Srestasathiern ◽  
Peerapon Vateekul

In the remote sensing domain, it is crucial to complete semantic segmentation on the raster images, e.g., river, building, forest, etc, on raster images. A deep convolutional encoder--decoder (DCED) network is the state-of-the-art semantic segmentation method for remotely sensed images. However, the accuracy is still limited, since the network is not designed for remotely sensed images and the training data in this domain is deficient. In this paper, we aim to propose a novel CNN for semantic segmentation particularly for remote sensing corpora with three main contributions. First, we propose applying a recent CNN called a global convolutional network (GCN), since it can capture different resolutions by extracting multi-scale features from different stages of the network. Additionally, we further enhance the network by improving its backbone using larger numbers of layers, which is suitable for medium resolution remotely sensed images. Second, "channel attention'' is presented in our network in order to select the most discriminative filters (features). Third, "domain-specific transfer learning'' is introduced to alleviate the scarcity issue by utilizing other remotely sensed corpora with different resolutions as pre-trained data. The experiment was then conducted on two given datasets: (i) medium resolution data collected from Landsat-8 satellite and (ii) very high resolution data called the ISPRS Vaihingen Challenge Dataset. The results show that our networks outperformed DCED in terms of $F1$ for 17.48% and 2.49% on medium and very high resolution corpora, respectively.


2021 ◽  
Vol 13 (19) ◽  
pp. 3870
Author(s):  
Hilma S. Nghiyalwa ◽  
Marcel Urban ◽  
Jussi Baade ◽  
Izak P. J. Smit ◽  
Abel Ramoelo ◽  
...  

Reliable estimates of savanna vegetation constituents (i.e., woody and herbaceous vegetation) are essential as they are both responders and drivers of global change. The savanna is a highly heterogenous biome with high variability in land cover types while also being very dynamic at both temporal and spatial scales. To understand the spatial-temporal dynamics of savannas, using Earth Observation (EO) data for mixed-pixel analysis is crucial. Mixed pixel analysis provides detailed land cover data at a sub-pixel level which are essential for conservation purposes, understanding food supply for herbivores, quantifying environmental change, such as bush encroachment, and fuel availability essential for understanding fire dynamics, and for accurate estimation of savanna biomass. This review paper consulted 197 studies employing mixed-pixel analysis in savanna ecosystems. The review indicates that studies have so far attempted to resolve the savanna mixed-pixel issues by using mainly coarse resolution data, such as Terra-Aqua MODIS and AVHRR and medium resolution Landsat, to provide fractional cover data. Hence, there is a lack of spatio-temporal mixed-pixel analysis for savannas at high spatial resolutions. Methods used for mixed-pixel analysis include parametric and non-parametric methods which range from pixel-unmixing models, such as linear spectral mixture analysis (SMA), time series decomposition, empirical methods to link the green vegetation parameters with Vegetation Indices (VIs), and machine learning methods, such as regression trees (RT) and random forests (RF). Most studies were undertaken at local and regional scale, highlighting a research gap for savanna mixed pixel studies at national, continental, and global level. Parametric methods for modeling spatio-temporal mixed pixel analysis were preferred for coarse to medium resolution remote sensing data, while non-parametric methods were preferred for very high to high spatial resolution data. The review indicates a gap for long time series spatio-temporal mixed-pixel analysis of savannas using high resolution data at various scales. There is potential to harmonize the available low resolution EO data with new high-resolution sensors to provide long time series of the savanna mixed pixel, which, according to this review, is missing.


2020 ◽  
Vol 12 (21) ◽  
pp. 3469
Author(s):  
Bilawal Abbasi ◽  
Zhihao Qin ◽  
Wenhui Du ◽  
Jinlong Fan ◽  
Chunliang Zhao ◽  
...  

The atmosphere has substantial effects on optical remote sensing imagery of the Earth’s surface from space. These effects come through the functioning of atmospheric particles on the radiometric transfer from the Earth’s surface through the atmosphere to the sensor in space. Precipitable water vapor (PWV), CO2, ozone, and aerosol in the atmosphere are very important among the particles through their functioning. This study presented an algorithm to retrieve total PWV from the Chinese second-generation polar-orbiting meteorological satellite FengYun 3D Medium Resolution Spectral Imager 2 (FY-3D MERSI-2) data, which have three near-infrared (NIR) water vapor absorbing channels, i.e., channel 16, 17, and 18. The algorithm was improved from the radiance ratio technique initially developed for Moderate-Resolution Imaging Spectroradiometer (MODIS) data. MODTRAN 5 was used to simulate the process of radiant transfer from the ground surfaces to the sensor at various atmospheric conditions for estimation of the coefficients of ratio technique, which was achieved through statistical regression analysis between the simulated radiance and transmittance values for FY-3D MERSI-2 NIR channels. The algorithm was then constructed as a linear combination of the three-water vapor absorbing channels of FY-3D MERSI-2. Measurements from two ground-based reference datasets were used to validate the algorithm: the sun photometer measurements of Aerosol Robotic Network (AERONET) and the microwave radiometer measurements of Energy’s Atmospheric Radiation Measurement Program (ARMP). The validation results showed that the algorithm performs very well when compared with the ground-based reference datasets. The estimated PWV values come with root mean square error (RMSE) of 0.28 g/cm2 for the ARMP and 0.26 g/cm2 for the AERONET datasets, with bias of 0.072 g/cm2 and 0.096 g/cm2 for the two reference datasets, respectively. The accuracy of the proposed algorithm revealed a better consistency with ground-based reference datasets. Thus, the proposed algorithm could be used as an alternative to retrieve PWV from FY-3D MERSI-2 data for various remote sensing applications such as agricultural monitoring, climate change, hydrologic cycle, and so on at various regional and global scales.


Sign in / Sign up

Export Citation Format

Share Document