Utilizing Additive Friction Stir Processing to Fabricate B4C Reinforced Ti–6Al–4V Matrix Surface Composite: Microstructure Refinement and Enhancement in Mechanical Properties

Author(s):  
H. A. Deore ◽  
J. Mishra ◽  
A. G. Rao ◽  
B. D. Bhanushali ◽  
V. D. Hiwarkar
Author(s):  
Balraj Singh ◽  
Jagdev Singh ◽  
Ravinder Singh Joshi

Friction stir processing (FSP) is an emerging method for improving surface properties of materials by composite fabrication. This study aims at optimizing the major FSP parameters and analysis of their real-time influence on the mechanical performance of a surface composite fabricated with Magnesium (Mg) matrix and Titanium Carbide (TiC) as reinforcement. Effects of different process parameters, tool rotational speed, plunge depth, the linear speed of the tool, cooling condition, and number of FSP passes have been examined. Using L27 array, a total of 27 combinations of these process parameters were analyzed by taking microhardness as an output response to find influential parameters by Taguchi's technique. Maximum micro-hardness was achieved when tool rpm of 600, cooling temperature of -10o C, tool feed of 15 mm/min, plunge depth of 0.35 mm, and 3 passes of FSP tool were chosen with the help of Taguchi's method. Analysis of variance indicated that cooling temperature, the tool feed, and the number of passes of the FSP tool were the most significant parameters.


2011 ◽  
Vol 18 (05) ◽  
pp. 183-188
Author(s):  
LIU PENG ◽  
QING-YU SHI ◽  
YUAN-BIN ZHANG ◽  
SHU-BO XU

A novel aluminium matrix surface composite added Al -based amorphous, whose layer depth was 5 mm, was fabricated by friction stir processing (FSP), at an air cooling. The surface composite region shows the obvious sandwich structure. It is considered to be a combination between the base metal and the amorphous strip via the FSP. The average hardness of the surface composite is about HV97, higher than the base metal is about HV80. The maximum tensile strength of the processed aluminium plate with the surface composite is 410 MPa. XRD results indicate that the constituent phases of the surface composite mainly include α- Al , Mg2Al3 , MnAl6 and La3Al11 Moreover, no obvious amorphous diffraction peaks are observed in the XRD results. However, a large number of ultrafine grained structures can be observed in the surface composite. The average grain size of them is ~90–400 nm constitutes the surface composite. These ultrafine grained structures are composed of the α- Al and α- Al amorphous structures.


Sign in / Sign up

Export Citation Format

Share Document