Effect of water activity, temperature, and incubation period on fungal growth and ochratoxin A production on Nyjer seeds

2018 ◽  
Vol 35 (1) ◽  
pp. 1-8 ◽  
Author(s):  
Dawit Gizachew ◽  
Yung-Chen Hsu ◽  
Barbara Szonyi ◽  
Wei-tsyi Evert Ting
2006 ◽  
Vol 108 (2) ◽  
pp. 188-195 ◽  
Author(s):  
A. Esteban ◽  
M.L. Abarca ◽  
M.R. Bragulat ◽  
F.J. Cabañes

2006 ◽  
Vol 23 (7) ◽  
pp. 634-640 ◽  
Author(s):  
A. Esteban ◽  
M.L. Abarca ◽  
M.R. Bragulat ◽  
F.J. Cabañes

2010 ◽  
Vol 75 (2) ◽  
pp. M89-M97 ◽  
Author(s):  
Salma Lasram ◽  
Souheib Oueslati ◽  
Ana Valero ◽  
Sonia Marin ◽  
Abdelwahed Ghorbel ◽  
...  

Author(s):  
Birgitta Maria Kunz ◽  
Laura Pförtner ◽  
Stefan Weigel ◽  
Sascha Rohn ◽  
Anselm Lehmacher ◽  
...  

AbstractPhomopsins are mycotoxins mainly infesting lupines, with phomopsin A (PHOA) being the main mycotoxin. PHOA is produced by Diaporthe toxica, formerly assigned as toxigenic Phomopsis leptostromiformis, causing infections in lupine plants and harvested seeds. However, Diaporthe species may also grow on other grain legumes, similar to Aspergillus westerdijkiae as an especially potent ochratoxin A (OTA) producer. Formation of PHOA and OTA was investigated on whole field peas as model system to assess fungal growth and toxin production at adverse storage conditions. Field pea samples were inoculated with the two fungal strains at two water activity (aw) values of 0.94 and 0.98 and three different levels of 30, 50, and 80% relative air humidity.After 14 days at an aw value of 0.98, the fungi produced 4.49 to 34.3 mg/kg PHOA and 1.44 to 3.35 g/kg OTA, respectively. Strains of D. toxica also tested showed higher PHOA concentrations of 28.3 to 32.4 mg/kg.D. toxica strains did not grow or produce PHOA at an aw values of 0.94, while A. westerdijkiae still showed growth and OTA production.Elevated water activity has a major impact both on OTA and, even more pronouncedly, on PHOA formation and thus, proper drying and storage of lupins as well as other grain legumes is crucial for product safety.


Author(s):  
Erick Baruch Estrada‐Bahena ◽  
Ricardo Salazar ◽  
Mónica Ramírez ◽  
Ma. Elena Moreno‐Godínez ◽  
Javier Jiménez‐Hernández ◽  
...  

2012 ◽  
Vol 23 (1) ◽  
pp. 1-8 ◽  
Author(s):  
Marianne K. Thomsen ◽  
Karsten Olsen ◽  
Jeanette Otte ◽  
Kirsten Sjøstrøm ◽  
Birgit B. Werner ◽  
...  

2007 ◽  
Vol 70 (12) ◽  
pp. 2884-2888 ◽  
Author(s):  
CHRYSOULA C. TASSOU ◽  
PANTELIS I. NATSKOULIS ◽  
EFSTATHIOS Z. PANAGOU ◽  
APOSTOLOS E. SPIROPOULOS ◽  
NARESH MAGAN

The aim of this study was to determine the effects of water activity (aw; 0.85 to 0.98) and temperature (10 to 40°C) on the radial growth rate and ochratoxin A (OA) production of two Aspergillus carbonarius isolates in vitro. The isolates were obtained from wine grapes cultivated in Greece, and the trial was conducted with a synthetic grape juice medium similar in composition to grapes between veraison (beginning of color change) and ripeness. Fungal growth and OA production data were collected for 55 days. Response surface curves and cardinal values for aw and temperature were obtained using multiple regression analysis. The lag phase lasted from less than 1 to 10 days. Both isolates grew optimally at 30 to 35°C and 0.96 aw, but maximum OA production occurred under suboptimal growth conditions (15 to 20°C and 0.93 to 0.96 aw). Growth also was observed at 0.85 aw and 25°C, however at this same aw the fungus failed to produce mycelium at any other temperatures tested. The isolates produced OA at 15 to 30°C and 0.90 to 0.98 aw. Maximum OA production was detected after 25 days of incubation at 20°C and 0.96 aw and was 3.14 and 2.67 μgg−1, respectively, for the two strains. The isolated strains used in this study were more xerotolerant than others from the Mediterranean basin. These data will allow producers to identify and thus monitor critical environmental conditions effectively in wine grapes. These data also increase the knowledge base concerning the ability of A. carbonarius to grow and produce toxin under different ecological conditions and can contribute to the development of secondary models for the prediction and risk assessment of OA in wine production.


Sign in / Sign up

Export Citation Format

Share Document