Water Activity and Temperature Effects on Fungal Growth and Ochratoxin A Production by Ochratoxigenic Aspergillus carbonarius Isolated from Tunisian Grapes

2010 ◽  
Vol 75 (2) ◽  
pp. M89-M97 ◽  
Author(s):  
Salma Lasram ◽  
Souheib Oueslati ◽  
Ana Valero ◽  
Sonia Marin ◽  
Abdelwahed Ghorbel ◽  
...  
2007 ◽  
Vol 70 (12) ◽  
pp. 2884-2888 ◽  
Author(s):  
CHRYSOULA C. TASSOU ◽  
PANTELIS I. NATSKOULIS ◽  
EFSTATHIOS Z. PANAGOU ◽  
APOSTOLOS E. SPIROPOULOS ◽  
NARESH MAGAN

The aim of this study was to determine the effects of water activity (aw; 0.85 to 0.98) and temperature (10 to 40°C) on the radial growth rate and ochratoxin A (OA) production of two Aspergillus carbonarius isolates in vitro. The isolates were obtained from wine grapes cultivated in Greece, and the trial was conducted with a synthetic grape juice medium similar in composition to grapes between veraison (beginning of color change) and ripeness. Fungal growth and OA production data were collected for 55 days. Response surface curves and cardinal values for aw and temperature were obtained using multiple regression analysis. The lag phase lasted from less than 1 to 10 days. Both isolates grew optimally at 30 to 35°C and 0.96 aw, but maximum OA production occurred under suboptimal growth conditions (15 to 20°C and 0.93 to 0.96 aw). Growth also was observed at 0.85 aw and 25°C, however at this same aw the fungus failed to produce mycelium at any other temperatures tested. The isolates produced OA at 15 to 30°C and 0.90 to 0.98 aw. Maximum OA production was detected after 25 days of incubation at 20°C and 0.96 aw and was 3.14 and 2.67 μgg−1, respectively, for the two strains. The isolated strains used in this study were more xerotolerant than others from the Mediterranean basin. These data will allow producers to identify and thus monitor critical environmental conditions effectively in wine grapes. These data also increase the knowledge base concerning the ability of A. carbonarius to grow and produce toxin under different ecological conditions and can contribute to the development of secondary models for the prediction and risk assessment of OA in wine production.


2014 ◽  
Vol 77 (11) ◽  
pp. 1947-1952 ◽  
Author(s):  
FABIANA REINIS FRANCA PASSAMANI ◽  
THAIS HERNANDES ◽  
NOELLY ALVES LOPES ◽  
SABRINA CARVALHO BASTOS ◽  
WILDER DOUGLAS SANTIAGO ◽  
...  

The growth of ochratoxigenic fungus and the presence of ochratoxin A (OTA) in grapes and their derivatives can be caused by a wide range of physical, chemical, and biological factors. The determination of interactions between these factors and fungal species from different climatic regions is important in designing models for minimizing the risk of OTA in wine and grape juice. This study evaluated the influence of temperature, water activity (aw), and pH on the development and production of OTA in a semisynthetic grape culture medium by Aspergillus carbonarius and Aspergillus niger strains. To analyze the growth conditions and production of OTA, an experimental design was conducted using response surface methodology as a tool to assess the effects of these abiotic variables on fungal behavior. A. carbonarius showed the highest growth at temperatures from 20 to 33°C, aw between 0.95 and 0.98, and pH levels between 5 and 6.5. Similarly, for A. niger, temperatures between 24 and 37°C, aw greater than 0.95, and pH levels between 4 and 6.5 were optimal. The greatest toxin concentrations for A. carbonarius and A. niger (10 μg/g and 7.0 μg/g, respectively) were found at 15°C, aw 0.99, and pH 5.35. The lowest pH was found to contribute to greater OTA production. These results show that the evaluated fungi are able to grow and produce OTA in a wide range of temperature, aw, and pH. However, the optimal conditions for toxin production are generally different from those optimal for fungal growth. The knowledge of optimal conditions for fungal growth and production of OTA, and of the stages of cultivation in which these conditions are optimal, allows a more precise assessment of the potential risk to health from consumption of products derived from grapes.


2006 ◽  
Vol 23 (7) ◽  
pp. 634-640 ◽  
Author(s):  
A. Esteban ◽  
M.L. Abarca ◽  
M.R. Bragulat ◽  
F.J. Cabañes

Author(s):  
Birgitta Maria Kunz ◽  
Laura Pförtner ◽  
Stefan Weigel ◽  
Sascha Rohn ◽  
Anselm Lehmacher ◽  
...  

AbstractPhomopsins are mycotoxins mainly infesting lupines, with phomopsin A (PHOA) being the main mycotoxin. PHOA is produced by Diaporthe toxica, formerly assigned as toxigenic Phomopsis leptostromiformis, causing infections in lupine plants and harvested seeds. However, Diaporthe species may also grow on other grain legumes, similar to Aspergillus westerdijkiae as an especially potent ochratoxin A (OTA) producer. Formation of PHOA and OTA was investigated on whole field peas as model system to assess fungal growth and toxin production at adverse storage conditions. Field pea samples were inoculated with the two fungal strains at two water activity (aw) values of 0.94 and 0.98 and three different levels of 30, 50, and 80% relative air humidity.After 14 days at an aw value of 0.98, the fungi produced 4.49 to 34.3 mg/kg PHOA and 1.44 to 3.35 g/kg OTA, respectively. Strains of D. toxica also tested showed higher PHOA concentrations of 28.3 to 32.4 mg/kg.D. toxica strains did not grow or produce PHOA at an aw values of 0.94, while A. westerdijkiae still showed growth and OTA production.Elevated water activity has a major impact both on OTA and, even more pronouncedly, on PHOA formation and thus, proper drying and storage of lupins as well as other grain legumes is crucial for product safety.


2014 ◽  
Vol 4 (3) ◽  
pp. 118-126
Author(s):  
Souad Zouhair ◽  
Souad Qjidaa Qjidaa ◽  
Atar Selouane ◽  
Driss Bouya ◽  
Cony Decock ◽  
...  

Five fungicides azoxystrobin (ortiva), benomyl (benlate), hexaconazole (hexa), pyrimethanil (scala) and thiabendazole (tectocal) were tested sepa-rately in vitro for their ability to inhibit the growth of two ochratoxigenic strains of A. niger and A. carbonarius previously isolated from grapes. All fungicides effectively reduced the growth rate of A. carbonarius and A. niger from 34 to 100% at the recommended dose (RD). Thiabendazole caused total inhibition of spore germination and growth of the two strains, regardless of the doses assayed. Benomyl completely inhibited growth of A. niger whereas for A. carbonarius, concentrations above 0.02xRD were required to prevent the growth. The inhibitory effect of hexaconazole, azoxystrobin and pyrime-thanil was dose-dependent. At sub-lethal concentrations of three fungicides, a dose-dependent increase in in ochratoxin A biosynthesis by two strains was observed. The use of fungicide should be checked for its ability to inhibit fungal growth as well as for their effect in terms of mycotoxins biosynthesis.


2016 ◽  
Vol 79 (9) ◽  
pp. 1508-1516 ◽  
Author(s):  
MICHELLE F. TERRA ◽  
NATHASHA de A. LIRA ◽  
FABIANA R. F. PASSAMANI ◽  
WILDER DOUGLAS SANTIAGO ◽  
MARIA das GRAÇAS CARDOSO ◽  
...  

ABSTRACT Prevention in the field of mycotoxin-producing fungi is the most effective strategy for controlling the presence of mycotoxins in foods. Chemical fungicides are widely used to protect crops, so their implications on mycotoxin production need to be considered. Therefore, the aim of this study was to evaluate the effect in vitro and on grapes of five fungicides commonly used on grape cultures in Brazil on Aspergillus carbonarius growth and ochratoxin A (OTA) production. At the doses recommended by manufacturers, most fungicides significantly reduced A. carbonarius growth and OTA production in vitro, whereas this effect was influenced by the type of fungicide, dose, and temperature. Temperature was the main factor that influenced the effectiveness of fungicides. In general, at 15°C, fungicides showed the greatest reduction on fungal growth and OTA production. Fungicide effect on grapes was different to that on a semisynthetic grape medium. All fungicide doses were not effective at controlling A. carbonarius in grapes. Thus, the direct effect of fungicides on grapes must be studied to obtain a better approximation of field conditions. The results indicate that the use of fungicides at the doses recommended by manufacturers is better than the application at low doses. This study showed that at the lowest doses, where fungal growth is not inhibited, fungicides positively stimulate OTA production.


Sign in / Sign up

Export Citation Format

Share Document