Hybrid position/force control using an admittance control scheme in Cartesian space for a 3-DOF planar cable-driven parallel robot

2016 ◽  
Vol 14 (4) ◽  
pp. 1106-1113 ◽  
Author(s):  
JongPyo Jun ◽  
Xuemei Jin ◽  
Andreas Pott ◽  
Sukho Park ◽  
Jong-Oh Park ◽  
...  
2010 ◽  
Vol 07 (03) ◽  
pp. 477-489 ◽  
Author(s):  
L. HUANG ◽  
W. L. XU ◽  
J. TORRANCE ◽  
J. E. BRONLUND

Parallel robots have been found in many applications where the work requirements are beyond the capabilities of serial robots. For example, mouth movements of chewing foods can be generated by a parallel robot. In this paper, the issue of dynamic position and force control of a chewing robot with a 6RSS mechanism is addressed. The kinematic and dynamic models of a generic 6RSS robot are developed and are then simplified considering the special features of a practical chewing robot and the requirements of controller design. An impedance control scheme is proposed to achieve the position and force control of the robot. A detailed description on the steps to implement the controller is also presented.


Author(s):  
Ilka Banfield ◽  
Roque J. Saltaren ◽  
Lisandro J. Puglisi ◽  
Rafael Aracil Santonja

An Hybrid Position-Force control scheme for hydraulic actuators is proposed for a Climbing Parallel Robot (CPR) based on a Stewart-Gough mechanism. The hydraulics actuators are modeled, and expressed as state-space variables. The parameter identification is based on experimental data and the box-grey identification procedure, using a minimization prediction error criterion. A cascade control strategy with feedback linearization and state estimation based on two control loops is used for each hydraulic actuator. The control strategy proposed for the hydraulic actuator is implemented in a real prototype, considering a position tracking task. The model of the actuators are included in the dynamic model of the CPR obtained via the virtual work formulation, which considers the thirteen bodies that composes the Stewart-Gough robot. The proposed controller is simulated and implemented on the CPR to test the limits of its performance and the real effects of friction. The results obtained from simulation and experiments are presented and discussed.


2021 ◽  
Vol 143 (7) ◽  
Author(s):  
Ran Hao ◽  
E. Erdem Tuna ◽  
M. Cenk Çavuşoğlu

Abstract Contact force quality is one of the most critical factors for safe and effective lesion formation during catheter based atrial fibrillation ablation procedures. In this paper, the contact stability and contact safety of a novel magnetic resonance imaging (MRI)-actuated robotic cardiac ablation catheter subject to surface motion disturbances are studied. First, a quasi-static contact force optimization algorithm, which calculates the actuation needed to achieve a desired contact force at an instantaneous tissue surface configuration is introduced. This algorithm is then generalized using a least-squares formulation to optimize the contact stability and safety over a prediction horizon for a given estimated heart motion trajectory. Four contact force control schemes are proposed based on these algorithms. The first proposed force control scheme employs instantaneous heart position feedback. The second control scheme applies a constant actuation level using a quasi-periodic heart motion prediction. The third and the last contact force control schemes employ a generalized adaptive filter-based heart motion prediction, where the former uses the predicted instantaneous position feedback, and the latter is a receding horizon controller. The performance of the proposed control schemes is compared and evaluated in a simulation environment.


1988 ◽  
Vol 21 (16) ◽  
pp. 249-254 ◽  
Author(s):  
R.K. Kankaanranta ◽  
H.N. Koivo

1970 ◽  
Vol 3 (1) ◽  
Author(s):  
Endra Pitowarno, Musa Mailah, Hishamuddin Jamaluddin

The active force control (AFC) method is known as a robust control scheme that dramatically enhances the performance of a robot arm particularly in compensating the disturbance effects. The main task of the AFC method is to estimate the inertia matrix in the feedback loop to provide the correct (motor) torque required to cancel out these disturbances. Several intelligent control schemes have already been introduced to enhance the estimation methods of acquiring the inertia matrix such as those using neural network, iterative learning and fuzzy logic. In this paper, we propose an alternative scheme called Knowledge-Based Trajectory Error Pattern Method (KBTEPM) to suppress the trajectory track error of the AFC scheme. The knowledge is developed from the trajectory track error characteristic based on the previous experimental results of the crude approximation method. It produces a unique, new and desirable error pattern when a trajectory command is forced. An experimental study was performed using simulation work on the AFC scheme with KBTEPM applied to a two-planar manipulator in which a set of rule-based algorithm is derived. A number of previous AFC schemes are also reviewed as benchmark. The simulation results show that the AFC-KBTEPM scheme successfully reduces the trajectory track error significantly even in the presence of the introduced disturbances.Key Words:  Active force control, estimated inertia matrix, robot arm, trajectory error pattern, knowledge-based.


Sign in / Sign up

Export Citation Format

Share Document