Double-Frequency Microseisms on the Thick Unconsolidated Sediments in Eastern and Southeastern Coasts of United States: Sources and Applications on Seismic Site Effect Evaluation

2021 ◽  
Vol 32 (5) ◽  
pp. 1190-1201
Author(s):  
Zhen Guo ◽  
Yu Huang ◽  
Adnan Aydin
2009 ◽  
Vol 176 (3) ◽  
pp. 925-937 ◽  
Author(s):  
Sylvette Bonnefoy-Claudet ◽  
Stéphane Baize ◽  
Luis Fabian Bonilla ◽  
Catherine Berge-Thierry ◽  
Cesar Pasten ◽  
...  

1993 ◽  
Vol 83 (5) ◽  
pp. 1574-1594
Author(s):  
Javier Lermo ◽  
Francisco J. Chávez-García

Abstract The spectral ratio technique is a common useful way to estimate empirical transfer function to evaluates site effects in regions of moderate to high seismicity. The purpose of this paper is to show that it is possible to estimate empirical transfer function using spectral ratios between horizontal and vertical components of motion without a reference station. The technique, originally proposed by Nakamura to analyze Rayleigh waves in the microtremor records, is presented briefly and it is discussed why it may be applicable to study the intense S-wave part in earthquake records. Results are presented for three different cities in Mexico: Oaxaca, Oax., Acapulco, Gro., and Mexico City. These cities are very different by their geological and tectonic contexts and also by the very different epicentral distances to the main seismogenic zones affecting each city. Each time we compare the results of Nakamura's technique with standard spectral ratios. In all three cases the results are very encouraging. We conclude that, if site effects are caused by simple geology, a first estimate of dominant period and local amplification level can be obtained using records of only one station.


Author(s):  
Lisa S. Schleicher ◽  
Thomas L. Pratt

ABSTRACT Damaging ground motions from the 2011 Mw 5.8 Virginia earthquake were likely increased due to site amplification from the unconsolidated sediments of the Atlantic Coastal Plain (ACP), highlighting the need to understand site response on these widespread strata along the coastal regions of the eastern United States. The horizontal-to-vertical spectral ratio (HVSR) method, using either earthquake signals or ambient noise as input, offers an appealing method for measuring site response on laterally extensive sediments, because it requires a single seismometer rather than requiring a nearby bedrock site to compute a horizontal sediment-to-bedrock spectral ratio (SBSR). Although previous studies show mixed results when comparing the two methods, the majority of these studies investigated site responses in confined sedimentary basins that can generate substantial 3D effects or have relatively small reflection coefficients at their base. In contrast, the flat-lying ACP strata and the underlying bedrock reflector should cause 1D resonance effects to dominate site response, with amplification of the fundamental resonance peaks controlled by the strong impedance contrast between the base of the sediments and the underlying bedrock. We compare site-response estimates on the ACP strata derived using the HVSR and SBSR methods from teleseismic signals recorded by regional arrays and observe a close match in the frequencies of the fundamental resonance peak (f0) determined by both methods. We find that correcting the HVSR amplitude using source term information from a bedrock site and multiplying the peak by a factor of 1.2 results in amplitude peaks that, on average, match SBSR results within a factor of 2. We therefore conclude that the HVSR method may successfully estimate regional linear weak-motion site-response amplifications from the ACP, or similar geologic environments, when appropriate region-specific corrections to the amplitude ratios are used.


2021 ◽  
pp. 875529302199383
Author(s):  
Sanaz Rezaeian ◽  
Peter M Powers ◽  
Allison M Shumway ◽  
Mark D Petersen ◽  
Nicolas Luco ◽  
...  

The United States Geological Survey (USGS) National Seismic Hazard Model (NSHM) is the scientific foundation of seismic design regulations in the United States and is regularly updated to consider the best available science and data. The 2018 update of the conterminous US NSHM includes major changes to the underlying ground motion models (GMMs). Most of the changes are motivated by the new multi-period response spectra requirements of seismic design regulations that use hazard results for 22 spectral periods and 8 site classes. In the central and eastern United States (CEUS), the 2018 NSHM incorporates 31 new GMMs for hard-rock site conditions [Formula: see text], including the Next Generation Attenuation (NGA)-East GMMs. New aleatory variability and site-effect models, both specific to the CEUS, are applied to all median hard-rock GMMs. This article documents the changes to the USGS GMM selection criteria and provides details on the new CEUS GMMs used in the 2018 NSHM update. The median GMMs, their weights, epistemic uncertainty, and aleatory variability are compared with those considered in prior NSHMs. This article further provides implementation details on the CEUS site-effect model, which allows conversion of hard-rock ground motions to other site conditions in the CEUS for the first time in NSHMs. Compared with the 2014 NSHM hard-rock ground motions, the weighted average of median GMMs increases for large magnitude events at middle to large distance range, epistemic uncertainty increases in almost all situations, but aleatory variability is not significantly different. Finally, the total effect on hazard is demonstrated for an assumed earthquake source model in the CEUS, which shows an increased ring of ground motions in the vicinity of the New Madrid seismic zone and decreased ground motions near the East Tennessee seismic zone.


Sign in / Sign up

Export Citation Format

Share Document