Multiphonon hopping conduction in carbon–nickel composite films at different deposition time

Rare Metals ◽  
2016 ◽  
Vol 37 (2) ◽  
pp. 143-147 ◽  
Author(s):  
Vali Dalouji ◽  
S. Mohammad Elahi ◽  
Shahoo Valedbagi
2005 ◽  
Vol 475-479 ◽  
pp. 1571-1574
Author(s):  
Bo Ping Zhang ◽  
Li-Shi Jiao ◽  
Hiroshi Masumoto ◽  
Takashi Goto

Au/SiO2 nano-composite thin films with 3 to 65 vol% Au content were prepared by induction-coil-coupled plasma sputtering. Au particles dispersed in the SiO2 matrix can be prepared by controlling the deposition time of one Au layer and the thickness of the one SiO2 layer. The Au nano-particle dispersed Au/SiO2 multilayer with an uniform nano-layered microstructure showed the absorption peak at the wavelength of 560 nm. The heat-treated Au/SiO2 films containing 3 to 65 vol% Au showed absorption peaks at the wavelength of 540 to 560 nm, while no absorption peak was observed in the as-deposited multilayers containing more than 12 vol% Au.


2014 ◽  
Vol 68 (9) ◽  
Author(s):  
María Hernández-Torres ◽  
María Ojeda-Carrera ◽  
Manuel Sánchez-Cantú ◽  
Nicolás Silva-González ◽  
Justo Gracia-Jiménez

AbstractCadmium sulfide/titanium dioxide (CdS/TiO2) composite films were grown on glass by the chemical bath deposition (DBQ) and sol-gel/dip coating methods, respectively, in order to increase the photocatalytic activity of TiO2 in photodegradation processes. The influence of the CdS deposition time on the morphology, optical absorption, and phononic modes of the composites were examined. Scanning electron microscopy (SEM) images showed clearly the CdS deposit on the TiO2 surface. The absorbance spectra indicated that the absorption of composites depends on the CdS deposition time and the absorption edges are shifted to the visible range. Micro Raman spectra exhibited the phonons associated with the TiO2 anatase and the longitudinal optic (LO) phonon of CdS whose intensity increases with the CdS deposition time. Photodegradation of methylene blue (MB) under visible light irradiation was observed in all films and the results were compared with those obtained with TiO2 films. The decomposition is higher for the composite with the CdS deposition time of 15 min. This optimal deposition time allows maximal enhancement of the charge carriers transfer to TiO2 involved in the photocatalysis. No signal associated with cadmium was detected by the atomic absorption spectroscopy (AAS), which means that the CdS photocorrosion does not occur since trap centers such as OH-Cd-S and Cl−, which trap holes and inhibit the photocorrosion, are produced during the growth process.


2010 ◽  
Vol 25 (4) ◽  
pp. 658-664 ◽  
Author(s):  
Chang-An Wang ◽  
Keyu Chen ◽  
Yong Huang ◽  
Huirong Le

Layer-structured polypyrrole/montmorillonite (PPy/MMT) naoncomposite films were synthesized by the electrodeposition method. The fabricated free-standing films consist of about 0∼2 wt% Na+-montmorillonite (NMMT). The thickness of films could be controlled by deposition time. X-ray diffraction (XRD) and scanning electron microscope (SEM) were used to observe the microstructure of the films. After MMT was introduced into the PPy matrix, the interspace between PPy chains decreased, according to the XRD results. The layered structure of the films was observed from the SEM images. Tensile and nanoindentation test results showed that the mechanical properties of the composite films were improved at low clay loading. The electrical conductivity of the films with 1.2 wt% MMT loading was increased from 3.6 to 51 S/cm, probably because of the restricted growth of PPy chains in the interspace of MMT layers.


2021 ◽  
Vol 5 (12) ◽  
pp. 309
Author(s):  
Daniele Battegazzore ◽  
Erica Fadda ◽  
Alberto Fina

This paper deals with the design, preparation, and characterization of conductive and flexible nanopapers based on graphite nanoplates (GNP) and polydimethylsiloxane (PDMS). Highly porous GNP nanopapers were first prepared by filtration from a GNP suspension in a solvent. Subsequently, PDMS impregnation was carried out to obtain a composite material. By varying the concentration of the polymer solution and the deposition time, PDMS/GNP nanopapers were produced with a wide range of PDMS contents, porosities, and densities. Thermal diffusivity of the composite films (both in-plane and cross-plane) were measured and correlated with the structure of the nanopapers. Selected formulations were investigated in detail for their physical, thermal, and mechanical properties, exhibiting high flexibility and resistance to more than 50 repeated bendings, stiffness of up to 1.3 MPa, and thermal conductivity of up to 25 W/m∙K. Based on the properties obtained, the materials presented in this paper may find applications in modern lightweight and flexible electronic devices.


2015 ◽  
Vol 761 ◽  
pp. 468-472 ◽  
Author(s):  
Elyas Talib ◽  
Kok Tee Lau ◽  
Muhammad Zaimi ◽  
Mohd Shahril Amin Bistamam ◽  
Nor Syafira Abdul Manaf ◽  
...  

This study aims to investigate multi-walled carbon nanotube and graphene composite thin films fabricated using cathodic electrophoretic deposition in aqueous solution. The deposition mechanism and films microstructure were investigated using the cyclic voltammetry (CV) and field emission scanning electron microscope. The depositions yield varied by the deposition time and deposition voltage. The composite films were studied for its application in the electrochemical capacitor. The electrochemical performance showed the capacitive behavior of the films in 6 M potassium hydroxide electrolyte. CV scans were verified from 0 to 1 V at different scan rates. The specific capacitance of 29 Fg-1 was achieved at the scan rate of 1 mVs-1.


2012 ◽  
Vol 706-709 ◽  
pp. 617-622
Author(s):  
Rong Ma ◽  
Igor Zhitomirsky

Electrophoretic deposition method has been developed for the fabrication of organic-inorganic composite films, containing bioglass and hydroxyapatite in a hyaluronic acid matrix. The film composition and deposition yield were varied by variation of the electrochemical bath composition and deposition time. The films were studied by scanning electron microscopy, thermogravimetric analysis and X-ray diffraction methods. The deposition method offers the advantages of room temperature processing and allows the fabrication of composite films for biomedical applications.


Sign in / Sign up

Export Citation Format

Share Document