Microwave assisted synthesis & properties of nano HA-TCP biphasic calcium phosphate

2012 ◽  
Vol 19 (5) ◽  
pp. 441-445 ◽  
Author(s):  
E. Ghomash Pasand ◽  
A. Nemati ◽  
M. Solati-Hashjin ◽  
K. Arzani ◽  
A. Farzadi
2007 ◽  
Vol 534-536 ◽  
pp. 49-52 ◽  
Author(s):  
Min Ho Youn ◽  
Rajat Kanti Paul ◽  
Ho Yeon Song ◽  
Byong Taek Lee

Using microwave synthesized HAp nano powder and polymethyl methacrylate (PMMA) as a pore-forming agent, the porous biphasic calcium phosphate (BCP) ceramics were fabricated depending on the sintering temperature. The synthesized HAp powders was about 70-90 nm in diameter. In the porous sintered bodies, the pores having 150-180 μm were homogeneously dispersed in the BCP matrix. Some amounts of pores interconnected due the necking of PMMA powders which will increase the osteoconductivity and ingrowth of bone-tissues while using as a bone substrate. As the sintering temperature increased, the relative density increased and showed the maximum value of 79.6%. From the SBF experiment, the maximum resorption of Ca2+ ion was observed in the sample sintered at 1000°C.


2004 ◽  
Vol 19 (6) ◽  
pp. 1876-1881 ◽  
Author(s):  
Sahil Jalota ◽  
A. Cuneyt Tas ◽  
Sarit B. Bhaduri

Calcium phosphate [single-phase hydroxyapatite (HA), single-phase tricalcium phosphate (TCP), and biphasic HA-TCP] nanowhiskers and/or powders were produced by using a novel microwave-assisted “combustion synthesis (auto ignition)/molten salt synthesis” hybrid route. This work is an example of our “synergistic processing” philosophy combining these three technologies while taking advantage of their useful aspects. Aqueous solutions containing NaNO3, Ca(NO3)2·4H2O and KH2PO4 (with or without urea) were irradiated in a household microwave oven for 5 min at 600 watts of power. The as-synthesized precursors were then simply stirred in water at room temperature for 1 h to obtain the nanowhiskers or powders of the desired calcium phosphate bioceramics.


Polymers ◽  
2019 ◽  
Vol 11 (10) ◽  
pp. 1562
Author(s):  
Dumitru Popovici ◽  
Andrei Diaconu ◽  
Aurelian Rotaru ◽  
Luminita Marin

An alternant poly(dihexyl fluorene-co diphenyl oxadiazole) has been synthetized by microwave-assisted oxidative polymerization. The structure has been confirmed by 1H-NMR and FTIR spectroscopies. Gel permeation chromatography indicated high molecular weight and low polydispersity index. DFT calculations suggested a complete separation of HOMO and LUMO orbitals, which were located on fluorene and oxadiazole moiety, respectively. X-ray diffraction, polarized light microscopy, and atomic force microscopy indicated the polymer tendency to stack into a layered morphology with a more compact structure for the films prepared by spin coating. Furthermore, UV-vis and photoluminescence spectroscopies indicated the formation of H-aggregates which played a key role in photoluminescence quenching in solid state. Nevertheless, the good charge mobility gained due to the orbital overlapping in H-aggregates led to excellent electroluminescence, which enabled the development of white OLED devices with outstanding stability.


2015 ◽  
Vol 56 ◽  
pp. 286-293 ◽  
Author(s):  
Nida Iqbal Khan ◽  
Kashif Ijaz ◽  
Muniza Zahid ◽  
Abdul S. Khan ◽  
Mohammed Rafiq Abdul Kadir ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document