Pitting corrosion resistance of a novel duplex alloy steel in alkali-activated slag extract in the presence of chloride ions

2017 ◽  
Vol 24 (10) ◽  
pp. 1134-1144 ◽  
Author(s):  
Jin-jie Shi ◽  
Jing Ming ◽  
Xin Liu
2016 ◽  
Vol 81 (2) ◽  
pp. 55-61 ◽  
Author(s):  
M. Ilieva ◽  
R. Radev

Purpose: The present study compares the corrosion behaviour of overaged AA 7075 before and after equal channel angular pressing ECAP in two media, containing chlorides, in order to answer the question how grain refinement of aluminium alloys influences their corrosion properties.Design/methodology/approach: The effect of equal channel angular pressing ECAP on corrosion behaviour of aluminium alloy AA 7075 was studied in two water solutions, containing chloride ions: 1) 0.01 M Na2SO4 with addition of 0.01%Cl-, and 2) 3g/l H2O2 and 57g/l NaCl. The changes in electrochemical characteristics, provoked by grain size refinement after equal channel angular pressing ECAP, were found using potentiodynamic polarisation. Steady state potential, corrosion potential, corrosion current density; breakdown (pitting) potential of overaged and deformed by equal channel angular pressing ECAP aluminium alloy AA 7075 were measured.Findings: In the environment with lower chloride concentration equal channel angular pressing ECAP process led to increase in pitting corrosion resistance and in the medium with higher chloride concentration - to decrease in pitting corrosion resistance. That way grain refinement does not demonstrate a uni-directional influence on corrosion resistance of AA 70775.Research limitations/implications: The results suggest the possibility for development of materials having the same chemical composition but with different corrosion resistance to different environments.Originality/value: The paper presents the corrosion behaviour of ultrafine-grained aluminium alloy AA 7075 and the influence of the chloride ions concentration in the corrosion medium on this behaviour.


2022 ◽  
Vol 320 ◽  
pp. 126219
Author(s):  
Yaguang Zhu ◽  
Xiaomei Wan ◽  
Xiao Han ◽  
Jie Ren ◽  
Juqian Luo ◽  
...  

2015 ◽  
Vol 2015 ◽  
pp. 1-7 ◽  
Author(s):  
Joon Woo Park ◽  
Ki Yong Ann ◽  
Chang-Geun Cho

The corrosion resistance of steel in alkali-activated slag (AAS) mortar was evaluated by a monitoring of the galvanic current and half-cell potential with time against a chloride-contaminated environment. For chloride transport, rapid chloride penetration test was performed, and chloride binding capacity of AAS was evaluated at a given chloride. The mortar/paste specimens were manufactured with ground granulated blast-furnace slag, instead of Portland cement, and alkali activators were added in mixing water, including Ca(OH)2, KOH and NaOH, to activate hydration process. As a result, it was found that the corrosion behavior was strongly dependent on the type of alkali activator: the AAS containing the Ca(OH)2activator was the most passive in monitoring of the galvanic corrosion and half-cell potential, while KOH, and NaOH activators indicated a similar level of corrosion to Portland cement mortar (control). Despite a lower binding of chloride ions in the paste, the AAS had quite a higher resistance to chloride transport in rapid chloride penetration, presumably due to the lower level of capillary pores, which was ensured by the pore distribution of AAS mortar in mercury intrusion porosimetry.


2013 ◽  
Vol 66 (2) ◽  
pp. 173-178 ◽  
Author(s):  
Thiago J. Mesquita ◽  
Eric Chauveau ◽  
Marc Mantel ◽  
Nicole Kinsman ◽  
Ricardo P. Nogueira

Corrosion of reinforcement steels, induced by chloride ions penetrating into the concrete, is the main cause of early damage, loss of serviceability and safety of reinforced concrete structures, which can be even more severe in the presence of concomitant concrete carbonation. In order to prevent reinforcement steel corrosion in highly aggressive alkaline environments, the use of stainless steels is becoming increasingly popular in coastal and marine constructions. Although widely used as an increasing corrosion resistance element in acidic environments, the influence of Mo addition on pitting corrosion resistance of stainless steels is not very clear in these conditions. Understanding Mo mechanism on corrosion resistance in alkaline media is hence of major importance, particularly for new lean grades with low Nickel and Molybdenum contents which presents a good balance between the properties required in these applications and the final cost of the material. In this work we will show the effect of Mo addition on pitting corrosion properties of austenitic, ferritic and duplex SS. A comparison between Mo content steels (alloys: 1.4404, 1.4113 and 1.4462) and very low molybdenum contents steels (alloys: 1.4301, 1.4016 and 1.4362) is done considering their pitting corrosion resistance (pitting potential Epit) in different corrosion conditions. The results are discussed with respect to the influence of Mo addition on pitting behaviors for the different stainless steel rebar families in several aggressive media mainly in synthetic, chlorinated and carbonated solution reproducing the real concrete pore environments (pH10 solution with carbonates and chlorides ions).


Alloy Digest ◽  
2000 ◽  
Vol 49 (5) ◽  

Abstract Nirosta 4429 is a low-carbon, high-nitrogen version of type 316 stainless steel. The low carbon imparts intergranular corrosion resistance while the nitrogen imparts both higher strength and some increased pitting corrosion resistance. It is recommended for use as welded parts that need not or cannot be annealed after welding. This datasheet provides information on composition, physical properties, elasticity, and tensile properties. It also includes information on high temperature performance and corrosion resistance as well as forming, heat treating, and joining. Filing Code: SS-787. Producer or source: ThyssenKrupp Nirosta.


Sign in / Sign up

Export Citation Format

Share Document