Physicochemical Properties of Bis-GMA/TEGDMA Dental Resin Reinforced with Silanized Multi-Walled Carbon Nanotubes

Silicon ◽  
2018 ◽  
Vol 11 (3) ◽  
pp. 1345-1353 ◽  
Author(s):  
Weizhen Zeng ◽  
Fang Liu ◽  
Jingwei He
2010 ◽  
Vol 7 (1) ◽  
pp. 10 ◽  
Author(s):  
Kai Loon Chen ◽  
Billy A. Smith ◽  
William P. Ball ◽  
D. Howard Fairbrother

Environmental context. The fate and bioavailability of engineered nanoparticles in natural aquatic systems are strongly influenced by their ability to remain dispersed in water. Consequently, understanding the colloidal properties of engineered nanoparticles through rigorous characterisation of physicochemical properties and measurements of particle stability will allow for a more accurate prediction of their environmental, health, and safety effects in aquatic systems. This review highlights some important techniques suitable for the assessment of the colloidal properties of engineered nanoparticles and discusses some recent findings obtained by using these techniques on two popular carbon-based nanoparticles, fullerene C60 and multi-walled carbon nanotubes. Abstract. The colloidal properties of engineered nanoparticles directly affect their use in a wide variety of applications and also control their environmental fate and mobility. The colloidal stability of engineered nanoparticles depends on their physicochemical properties within the given aqueous medium and is ultimately reflected in the particles’ aggregation and deposition behaviour. This review presents some of the key experimental methods that are currently used to probe colloidal properties and quantify engineered nanoparticle stability in water. Case studies from fullerene C60 nanoparticles and multi-walled carbon nanotubes illustrate how the characterisation and measurement methods are used to understand and predict nanoparticle fate in aquatic systems. Consideration of the comparisons between these two classes of carbon-based nanoparticles provides useful insights into some major current knowledge gaps while also revealing clues about needed future developments. Key issues to be resolved relate to the nature of near-range surface forces and the origins of surface charge, particularly for the reportedly unmodified or ‘pure’ carbon-based nanoparticles.


Catalysts ◽  
2019 ◽  
Vol 9 (7) ◽  
pp. 605 ◽  
Author(s):  
Mierczynski ◽  
Dawid ◽  
Chalupka ◽  
Maniukiewicz ◽  
Witoska ◽  
...  

The main goal of the presented paper is to study the influence of a range of support materials, i.e., multi-walled carbon nanotubes (MWCNTs), Al2O3-Cr2O3 (2:1), zeolite β-H and zeolite β-Na on the physicochemical and catalytic properties in Fischer-Tropsch (F-T) synthesis. All tested Fe catalysts were synthesized using the impregnation method. Their physicochemical properties were extensively investigated using various characterization techniques such as the Temperature-Programmed Reduction of hydrogen (TPR-H2), X-ray diffraction, Temperature-Programmed Desorption of ammonia (TPD-NH3), Temperature-Programmed Desorption of carbon dioxide (TPD-CO2), Fourier transform infrared spectrometry (FTIR), Brunauer Emmett Teller method (BET) and Thermogravimetric Differential Analysis coupled with Mass Spectrometer (TG-DTA-MS). Activity tests were performed in F-T synthesis using a high-pressure fixed bed reactor and a gas mixture of H2 and CO (50% CO and 50% H2). The correlation between the physicochemical properties and reactivity in F-T synthesis was determined. The highest activity was from a 40%Fe/Al2O3-Cr2O3 (2:1) system which exhibited 89.9% of CO conversion and 66.6% selectivity toward liquid products. This catalyst also exhibited the lowest acidity, but the highest quantity of iron carbides on its surface. In addition, in the case of iron catalysts supported on MWCNTs or a binary oxide system, the smallest amount of carbon deposit formed on the surface of the catalyst during the F-T process was confirmed.


Acta Naturae ◽  
2011 ◽  
Vol 3 (1) ◽  
pp. 99-106 ◽  
Author(s):  
E A Smirnova ◽  
A A Gusev ◽  
O N Zaitseva ◽  
E M Lazareva ◽  
G E Onishchenko ◽  
...  

2003 ◽  
Vol 772 ◽  
Author(s):  
T. Seeger ◽  
G. de la Fuente ◽  
W.K. Maser ◽  
A.M. Benito ◽  
A. Righi ◽  
...  

AbstractCarbon nanotubes (CNT) are interesting candidates for the reinforcement in robust composites and for conducting fillers in polymers due to their fascinating electronic and mechanical properties. For the first time, we report the incorporation of multi walled carbon nanotubes (MWNTs) into silica-glass surfaces by means of partial surface-melting caused by a continuous wave Nd:YAG laser. MWNTs were detected being well incorporated in the silica-surface. The composites are characterized using scanning electron microscopy (SEM) and Raman-spectroscopy. A model for the composite-formation is proposed based on heatabsorption by MWNTs and a partial melting of the silica-surface.


Sign in / Sign up

Export Citation Format

Share Document