Mechanical, Low Velocity Impact, Fatigue and Tribology Behaviour of Silane Grafted Aramid Fibre and Nano-silica Toughened Epoxy Composite

Silicon ◽  
2020 ◽  
Author(s):  
Pratibha Dharmavarapu ◽  
M. B. S. Sreekara Reddy
2020 ◽  
Vol 34 (5) ◽  
pp. 1879-1886
Author(s):  
Pham Xuan Quang ◽  
Satrio Wicaksono ◽  
Tatacipta Dirgantara ◽  
Bambang Kismono Hadi

Author(s):  
Saravanan Mahesh ◽  
Muthukumar Chandrasekar ◽  
R. Asokan ◽  
Yaddula Chandra Mouli ◽  
Katta Sridhar ◽  
...  

Impact resistance is an inevitable characteristic of the composites employed in the high performance structural applications. Due to the growing interest in the use of sisal fibre as reinforcement in the polymer composites, it is required to determine the response of sisal/epoxy composites to low velocity impact at high incident energies where perforation can occur and assess the damage characteristics using a non-destructive technique. In this work, sisal/epoxy composites were subjected to drop weight impact in the velocity range of 3 m/s to 5 m/s at different energy levels between 20 J to 50 J according to the ASTM D7136. Based on the results observed, it is concluded that both the peak load and absorbed energy increased with the increasing incident energy level up to 40 J. At 50 J, perforation occurred and the maximum deformation was approximately 22 mm for the sisal/ epoxy composite. Damage characteristics and failure behaviour of the composite at different incident energies was examined from the visual images of the front and back face of the composite. The quantitative assessment of crack propagation in the sisal/epoxy composite and the damage area were determined from the ultrasonic C-scan images of the sample post impact at various energy levels.


2021 ◽  
pp. 002199832110370
Author(s):  
Harun Sepetcioglu ◽  
Necmettin Tarakcioglu

In this study, the fatigue behavior of 0.25 wt.% graphene nanoplatelets (GnPs) reinforced and unreinforced impact damaged basalt/epoxy composite pressure vessels (CPVs) was investigated. The CPVs were subjected to low-velocity impact (LVI) of 2.5 J, 5 J, 7.5 J, 10 J, 15 J, 20 J, and 25 J under internal pressure of 50 bar (hoop/axial prestresses: 98/49 MPa). Then, to detect fatigue life changes, fatigue tests were performed at load rates of 30% of ultimate hoop stress (σHS), where sweat damage occurred in the basalt/epoxy CPVs under alternating internal pressure. Considering the remaining fatigue life and formation of the damages in the CPVs for all impact energies, to investigate the fatigue behavior and GnPs effects of CPVs subjected to low-velocity impact, an impact value of 5 J was preferred. The 5 J impact damaged CPVs were subjected to fatigue cyclic following ASTM D 2992 at load rates of 20%, 25%, 30%, 35%, and 40% of the σHS. The fatigue life of damaged CPVs was compared by that of undamaged over S-N curves. As the impact energy increased, the impact damage area increased. The increased size of damage reduced the fatigue life of basalt/epoxy CPVs. At the fatigue load rates mentioned above, the GnPs improved the fatigue life of damaged basalt/epoxy CPVs by about 3.5, 3.2, 11.3, 2.4, and 5 times, respectively.


2018 ◽  
Author(s):  
Pietro Russo ◽  
Giorgio Simeoli ◽  
Francesca Cimino ◽  
Maria Rosaria Ricciardi ◽  
Valentina Lopresto ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document