stainless steel wire mesh
Recently Published Documents


TOTAL DOCUMENTS

78
(FIVE YEARS 23)

H-INDEX

12
(FIVE YEARS 3)

Author(s):  
Liyue Gao ◽  
Xue Kong ◽  
Danni Meng ◽  
Senlin Yang ◽  
Wanying Guo ◽  
...  

Author(s):  
Faisal Hayat Khan

This research paper aims at a detailed study of the seismic performance of reinforced concrete Beam-Column Joint (BCJ) under quasi-static cyclic loading. Firstly, the numerical simulations of the previously experimented specimen have been performed by Finite Element Method (FEM) using ABAQUS 6.14. Secondly, the parametric study has been conducted for the validated model by the introduction of Fiber Reinforced Polymer (FRP) bars in the form of Carbon Fiber Reinforced Polymer (CFRP) and Glass Fiber Reinforced Polymer (GFRP). An investigation has also been carried out to study the effect of T-304 Stainless Steel Wire Mesh (SSWM) on the strengthening of the finite element numerical model. Ten different numerical models were evaluated which included two sets, the first set includes five models having a control model and the models in which the steel reinforcement was partially or full replaced by CFRP and GFRP bars, the next set contains further five models in which stainless-steel wire mesh was wrapped around the core concrete in the aforementioned models. The results show the evidence for GFRP bars to be used in seismic designing, as have shown an almost 100% increase in deflection with the requisite amount of energy dissipation and ultimate strength capacities. Furthermore, the crack initiation was delayed by 30-40% in terms of deflection when stainless-steel wire mesh was used which controls the damage in the critical zone of BCJ. The prime factors in controlling the crack pattern, energy dissipation, ultimate strength and deflection capacity of beam-column joint were the position of FRP bars, reinforcement ratio, dimensions of beam-column joints and the available economy.


Materials ◽  
2021 ◽  
Vol 14 (3) ◽  
pp. 677
Author(s):  
Shengcun Lin ◽  
Zhaoyao Zhou

Porous metal materials have important mechanical properties, and there are various manufacturing methods to produce them. In this paper, a porous, thin strip was fabricated by the composite rolling of stainless steel wire mesh and stainless steel powder. Then, a porous plate of stainless steel wire mesh and powder composite (SWMPC) was prepared by folding, pressing, and vacuum sintering the thin strip, and its structural characteristics and permeability were studied. The effects of the gap of the roller, gap of the powder box, number of layers by folding, and sintering parameters on the porosity and mechanical properties were also studied. The results indicated that the permeability increased with the increasing of porosity. Sintering parameters had a great influence on the mechanical properties. The larger the roll gap, the higher the porosity and the weaker the mechanical properties. As the gap of the powder box increased, the porosity decreased and the mechanical properties improved. The number of layers had no effect on the porosity. The first three stages of tensile curves of 10 and 15 layers were deformation stages and generally coincided, the time was short at the fracture stage. However, the mechanical properties got a raise when layers was 15.


2020 ◽  
Vol 39 (15-16) ◽  
pp. 613-633 ◽  
Author(s):  
Çağrı Uzay ◽  
Necdet Geren

In this study, flexural characteristics of low-density polyvinylchloride foam core sandwich structures consist of carbon fibre/epoxy facings hybridised with very thin stainless-steel wire mesh sheets were investigated. A comprehensive work was conducted considering the following design parameters: core thicknesses, wire mesh sizes, stacking sequences of wire mesh sheets and support span lengths for flexural tests. During the evaluation of flexural characteristics, experimental ASTM standards (C393, D3039, D7249 and D7250) were utilised. In addition, experimental flexural stiffness values were compared to analytically obtained results. By hybridisation of carbon fibre/epoxy facings with wire mesh sheets, significant improvements in flexural characteristics of sandwich structures were obtained. Besides improving bending behaviour and the larger amount of load-carrying capacity even at the same deflection values, the sandwiches with wire mesh sheets also prevented catastrophic sudden failure, which is the common case for carbon/epoxy/polymer foam core sandwiches. Response surface methodology was applied to evaluate the effects of the design variables on the load capacity of the sandwiches, and optimal solutions were revealed. The developed sandwiches can be good candidates in applications where both high stiffness-to-weight ratio and resistance to sudden failure are desired.


2020 ◽  
Vol 146 (2) ◽  
pp. 04019127 ◽  
Author(s):  
Caizheng Wang ◽  
Krishna Shankar ◽  
Evgeny Morozov ◽  
Karthik Ram Ramakrishnan ◽  
Alan Fien

Sign in / Sign up

Export Citation Format

Share Document