The Novel Free Radical Scavenger, Edaravone, Increases Neural Stem Cell Number Around the Area of Damage Following Rat Traumatic Brain Injury

2009 ◽  
Vol 16 (4) ◽  
pp. 378-389 ◽  
Author(s):  
Tatsuki Itoh ◽  
Takao Satou ◽  
Shozo Nishida ◽  
Masahiro Tsubaki ◽  
Shigeo Hashimoto ◽  
...  
1996 ◽  
Vol 307 (2) ◽  
pp. 149-155 ◽  
Author(s):  
Margaret A. Petty ◽  
Patrick Poulet ◽  
Antoine Haas ◽  
Izzie J. Namer ◽  
Joseph Wagner

2008 ◽  
Vol 25 (12) ◽  
pp. 1449-1457 ◽  
Author(s):  
Fredrik Clausen ◽  
Niklas Marklund ◽  
Anders Lewén ◽  
Lars Hillered

2011 ◽  
Vol 28 (10) ◽  
pp. 2123-2134 ◽  
Author(s):  
Guo-Hua Wang ◽  
Zheng-Lin Jiang ◽  
Yong-Cai Li ◽  
Xia Li ◽  
Hong Shi ◽  
...  

Author(s):  
Eunyoung Park ◽  
Johnathan G. Lyon ◽  
Melissa Alvarado‐Velez ◽  
Martha I. Betancur ◽  
Nassir Mokarram ◽  
...  

Antioxidants ◽  
2020 ◽  
Vol 9 (10) ◽  
pp. 943 ◽  
Author(s):  
Helene Ismail ◽  
Zaynab Shakkour ◽  
Maha Tabet ◽  
Samar Abdelhady ◽  
Abir Kobaisi ◽  
...  

Traumatic brain injury (TBI) is a major health concern worldwide and is classified based on severity into mild, moderate, and severe. The mechanical injury in TBI leads to a metabolic and ionic imbalance, which eventually leads to excessive production of reactive oxygen species (ROS) and a state of oxidative stress. To date, no drug has been approved by the food and drug administration (FDA) for the treatment of TBI. Nevertheless, it is thought that targeting the pathology mechanisms would alleviate the consequences of TBI. For that purpose, antioxidants have been considered as treatment options in TBI and were shown to have a neuroprotective effect. In this review, we will discuss oxidative stress in TBI, the history of antioxidant utilization in the treatment of TBI, and we will focus on two novel antioxidants, mitoquinone (MitoQ) and edaravone. MitoQ can cross the blood brain barrier and cellular membranes to accumulate in the mitochondria and is thought to activate the Nrf2/ARE pathway leading to an increase in the expression of antioxidant enzymes. Edaravone is a free radical scavenger that leads to the mitigation of damage resulting from oxidative stress with a possible association to the activation of the Nrf2/ARE pathway as well.


2020 ◽  
Vol 2 (1) ◽  
Author(s):  
Hoda M Gebril ◽  
Rizelle Mae Rose ◽  
Raey Gesese ◽  
Martine P Emond ◽  
Yuqing Huo ◽  
...  

Abstract Traumatic brain injury (TBI) is a major public health concern and remains a leading cause of disability and socio-economic burden. To date, there is no proven therapy that promotes brain repair following an injury to the brain. In this study, we explored the role of an isoform of adenosine kinase expressed in the cell nucleus (ADK-L) as a potential regulator of neural stem cell proliferation in the brain. The rationale for this hypothesis is based on coordinated expression changes of ADK-L during foetal and postnatal murine and human brain development indicating a role in the regulation of cell proliferation and plasticity in the brain. We first tested whether the genetic disruption of ADK-L would increase neural stem cell proliferation after TBI. Three days after TBI, modelled by a controlled cortical impact, transgenic mice, which lack ADK-L (ADKΔneuron) in the dentate gyrus (DG) showed a significant increase in neural stem cell proliferation as evidenced by significant increases in doublecortin and Ki67-positive cells, whereas animals with transgenic overexpression of ADK-L in dorsal forebrain neurons (ADK-Ltg) showed an opposite effect of attenuated neural stem cell proliferation. Next, we translated those findings into a pharmacological approach to augment neural stem cell proliferation in the injured brain. Wild-type C57BL/6 mice were treated with the small molecule adenosine kinase inhibitor 5-iodotubercidin for 3 days after the induction of TBI. We demonstrate significantly enhanced neural stem cell proliferation in the DG of 5-iodotubercidin-treated mice compared to vehicle-treated injured animals. To rule out the possibility that blockade of ADK-L has any effects in non-injured animals, we quantified baseline neural stem cell proliferation in ADKΔneuron mice, which was not altered, whereas baseline neural stem cell proliferation in ADK-Ltg mice was enhanced. Together these findings demonstrate a novel function of ADK-L involved in the regulation of neural stem cell proliferation after TBI.


Sign in / Sign up

Export Citation Format

Share Document