A comprehensive handwritten Indic script recognition system: a tree-based approach

Author(s):  
Pawan Kumar Singh ◽  
Ram Sarkar ◽  
Vikrant Bhateja ◽  
Mita Nasipuri
2020 ◽  
Vol 5 (2) ◽  
pp. 609
Author(s):  
Segun Aina ◽  
Kofoworola V. Sholesi ◽  
Aderonke R. Lawal ◽  
Samuel D. Okegbile ◽  
Adeniran I. Oluwaranti

This paper presents the application of Gaussian blur filters and Support Vector Machine (SVM) techniques for greeting recognition among the Yoruba tribe of Nigeria. Existing efforts have considered different recognition gestures. However, tribal greeting postures or gestures recognition for the Nigerian geographical space has not been studied before. Some cultural gestures are not correctly identified by people of the same tribe, not to mention other people from different tribes, thereby posing a challenge of misinterpretation of meaning. Also, some cultural gestures are unknown to most people outside a tribe, which could also hinder human interaction; hence there is a need to automate the recognition of Nigerian tribal greeting gestures. This work hence develops a Gaussian Blur – SVM based system capable of recognizing the Yoruba tribe greeting postures for men and women. Videos of individuals performing various greeting gestures were collected and processed into image frames. The images were resized and a Gaussian blur filter was used to remove noise from them. This research used a moment-based feature extraction algorithm to extract shape features that were passed as input to SVM. SVM is exploited and trained to perform the greeting gesture recognition task to recognize two Nigerian tribe greeting postures. To confirm the robustness of the system, 20%, 25% and 30% of the dataset acquired from the preprocessed images were used to test the system. A recognition rate of 94% could be achieved when SVM is used, as shown by the result which invariably proves that the proposed method is efficient.


Author(s):  
Mohamed H Abdelhafiz ◽  
Mohammed I Awad ◽  
Ahmed Sadek ◽  
Farid Tolbah

This paper describes the development of a human gait activity recognition system. A multi-sensor recognition system, which has been developed for this purpose, was reduced to a single sensor-based recognition system. A sensor election method was devised based on the maximum relevance minimum redundancy feature selector to determine the sensor’s optimum position regarding activity recognition. The election method proved that the thigh has the highest contribution to recognize walking, stairs and ramp ascending, and descending activities. A recognition algorithm (which depends mainly on features that are classified by random forest, and selected by a combined feature selector using the maximum relevance minimum redundancy and genetic algorithm) has been modified to compensate the degradation that occurs in the prediction accuracy due to the reduction in the number of sensors. The first modification was implementing a double layer classifier in order to discriminate between the interfered activities. The second modification was adding physical features to the features dictionary used. These modifications succeeded to improve the prediction accuracy to allow a single sensor recognition system to behave in the same manner as a multi-sensor activity recognition system.


Author(s):  
Abdolhossein Sarrafzadeh ◽  
Samuel T.V. Alexander ◽  
Jamshid Shanbehzadeh

Intelligent tutoring systems (ITS) are still not as effective as one-on-one human tutoring. The next generation of intelligent tutors are expected to be able to take into account the emotional state of students. This paper presents research on the development of an Affective Tutoring System (ATS). The system called “Easy with Eve” adapts to students via a lifelike animated agent who is able to detect student emotion through facial expression analysis, and can display emotion herself. Eve’s adaptations are guided by a case-based method for adapting to student states; this method uses data that was generated by an observational study of human tutors. This paper presents an analysis of facial expressions of students engaged in learning with human tutors and how a facial expression recognition system, a life like agent and a case based system based on this analysis have been integrated to develop an ATS for mathematics.


2013 ◽  
Vol 475-476 ◽  
pp. 282-286
Author(s):  
Tao Sun

In order to deal with the contradiction between suppressing speckle noise and reserving details in laser active imaging recognition system, a denoising method based on contour curvature is proposed. Due to the contour curvature, the pixels in the image are divided into different classes, which contain different amount of information. The filter parameters are different for each class. Firstly, the origin image is smoothed using wavelet soft thresholding, then the contours are extracted by Morphological edge detection operator. Due to the difference of contour curvature, the pixels are labeled with point of strong signal, point of weak signal or point of no signal. Pixels with different labels are filtered by Lee filter of different step width. Experiment result indicates that compared with classical Lee filter, the proposed method performs better in filtering and keeping edge information.


Processes ◽  
2019 ◽  
Vol 7 (7) ◽  
pp. 457 ◽  
Author(s):  
William Raveane ◽  
Pedro Luis Galdámez ◽  
María Angélica González Arrieta

The difficulty in precisely detecting and locating an ear within an image is the first step to tackle in an ear-based biometric recognition system, a challenge which increases in difficulty when working with variable photographic conditions. This is in part due to the irregular shapes of human ears, but also because of variable lighting conditions and the ever changing profile shape of an ear’s projection when photographed. An ear detection system involving multiple convolutional neural networks and a detection grouping algorithm is proposed to identify the presence and location of an ear in a given input image. The proposed method matches the performance of other methods when analyzed against clean and purpose-shot photographs, reaching an accuracy of upwards of 98%, but clearly outperforms them with a rate of over 86% when the system is subjected to non-cooperative natural images where the subject appears in challenging orientations and photographic conditions.


Sign in / Sign up

Export Citation Format

Share Document