Cognitive population initialization for swarm intelligence and evolutionary computing

Author(s):  
Muhammad Arif ◽  
Jianer Chen ◽  
Guojun Wang ◽  
Hafiz Tayyab Rauf
2009 ◽  
pp. 131-142
Author(s):  
Thomas E. Potok ◽  
Xiaohui Cui ◽  
Yu Jiao

The rate at which information overwhelms humans is significantly more than the rate at which humans have learned to process, analyze, and leverage this information. To overcome this challenge, new methods of computing must be formulated, and scientist and engineers have looked to nature for inspiration in developing these new methods. Consequently, evolutionary computing has emerged as new paradigm for computing, and has rapidly demonstrated its ability to solve real-world problems where traditional techniques have failed. This field of work has now become quite broad and encompasses areas ranging from artificial life to neural networks. This chapter specifically focuses on two sub-areas of nature-inspired computing: Evolutionary Algorithms and Swarm Intelligence.


Author(s):  
Prayag Narula ◽  
Sudip Misra ◽  
Sanjay Kumar Dhurandher

Wireless ad-hoc networks are infrastructureless networks in which heterogeneous capable nodes assemble together and start communicating without any backbone support. These networks can be made truly dynamic and the nodes in these networks can move about freely while connecting and disconnecting with other nodes in the network. This property of ad-hoc networks to self-organize and communicate without any extrinsic support gives them tremendous flexibility and makes them perfect for applications such as emergencies, crisis-management, military and healthcare. For example, in case of emergencies such as earthquakes, often most of the existing wired network infrastructure gets destroyed. In addition, since most of the wireless networks such as GSM and IEEE 802.11 wireless LAN use wired infrastructure as their backbone, often they are also rendered useless. In such scenarios, ad-hoc networks can be deployed swiftly and used for coordinating relief and rescue operations. Ad-hoc networks can be used for communication between various stations in the battle-field, where setting up a wired or an infrastructure-based network is often considered impractical. Though a lot of research has been done on ad-hoc networks, a lot of problems such as security, qualityof- service (QoS) and multicasting need to be addressed satisfactorily before ad-hoc networks can move out of the labs and provide a flexible and cheap networking solution. Evolutionary computing algorithms are a class of bio-inspired computing algorithms. Bio-inspired computing refers to the collection of algorithms that use techniques learnt from natural biological phenomena and implement them to solve a mathematical problem (Olario & Zomaya, 2006). Natural phenomena such as evolution, genetics, and collective behavior of social organisms and functioning of a mammalian brain teach us a variety of techniques that can be effectively employed to solve problems in computer science which are inherently tough. In this Chapter and the chapter entitled, “Swarm Intelligence Approach for Wireless Ad Hoc Networks” of this book, we present some of the currently available important implementations of bio-inspired computing in the field of ad-hoc networks. This chapter looks at the problem of optimal clustering in ad-hoc networks and its solution using Genetic Programming (GP) approach. The chapter entitled, “Swarm Intelligence Approaches for Wireless Ad Hoc Networks” of this book, continues the same spirit and explains the use of the principles underlying Ant Colony Optimization (ACO) for routing in ad-hoc networks.


Author(s):  
A. Radhika ◽  
D. Haritha

Wireless Sensor Networks, have witnessed significant amount of improvement in research across various areas like Routing, Security, Localization, Deployment and above all Energy Efficiency. Congestion is a problem of  importance in resource constrained Wireless Sensor Networks, especially for large networks, where the traffic loads exceed the available capacity of the resources . Sensor nodes are prone to failure and the misbehaviour of these faulty nodes creates further congestion. The resulting effect is a degradation in network performance, additional computation and increased energy consumption, which in turn decreases network lifetime. Hence, the data packet routing algorithm should consider congestion as one of the parameters, in addition to the role of the faulty nodes and not merely energy efficient protocols .Nowadays, the main central point of attraction is the concept of Swarm Intelligence based techniques integration in WSN.  Swarm Intelligence based Computational Swarm Intelligence Techniques have improvised WSN in terms of efficiency, Performance, robustness and scalability. The main objective of this research paper is to propose congestion aware , energy efficient, routing approach that utilizes Ant Colony Optimization, in which faulty nodes are isolated by means of the concept of trust further we compare the performance of various existing routing protocols like AODV, DSDV and DSR routing protocols, ACO Based Routing Protocol  with Trust Based Congestion aware ACO Based Routing in terms of End to End Delay, Packet Delivery Rate, Routing Overhead, Throughput and Energy Efficiency. Simulation based results and data analysis shows that overall TBC-ACO is 150% more efficient in terms of overall performance as compared to other existing routing protocols for Wireless Sensor Networks.


Sign in / Sign up

Export Citation Format

Share Document