Analyzing the effect of atmospheric trace elements on selected plant species

2015 ◽  
Vol 74 (12) ◽  
pp. 7793-7800
Author(s):  
Priyanka Sharma ◽  
Shailender Kumar ◽  
Abhinav Garg ◽  
Chirashree Ghosh
Keyword(s):  
2021 ◽  
Vol 11 (4) ◽  
pp. 1769
Author(s):  
María Noelia Jiménez ◽  
Gianluigi Bacchetta ◽  
Francisco Bruno Navarro ◽  
Mauro Casti ◽  
Emilia Fernández-Ondoño

The use of plant species to stabilize and accumulate trace elements in contaminated soils is considered of great usefulness given the difficulty of decontaminating large areas subjected to mining for long periods. In this work, the bioaccumulation of trace elements is studied by relating the concentrations in leaves and roots of three plants of Mediterranean distribution (Dittrichia viscosa, Cistus salviifolius, Euphorbia pithyusa subsp. cupanii) with the concentrations of trace elements in contaminated and uncontaminated soils. Furthermore, in the case of D. viscosa, to know the concentration of each element by biomass, the pool of trace elements was determined both in the aerial part and in the roots. The bioaccumulation factor was not high enough in any of the species studied to be considered as phytoextractors. However, species like the ones studied in this work that live on soils with a wide range of concentration of trace elements and that develop a considerable biomass could be considered for stabilization of contaminated soils. The plant species studied in this work are good candidates for gentle-remediation options in the polluted Mediterranean.


Agronomy ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 1750
Author(s):  
María Pilar Bernal ◽  
Donatella Grippi ◽  
Rafael Clemente

Phytomanagement of trace element-contaminated soils combines sustainable soil remediation with the use of plant biomass for different applications. Consequently, phytostabilization using plant species useful for bioenergy production has recently received increasing attention. However, the water requirement of most of these species is a limitation for their use under Mediterranean climatic conditions. In this work, eight plant species growing naturally in mine soils contaminated by trace elements were evaluated for their use as bioenergy crops using thermochemical (combustion) and biochemical (anaerobic digestion) methods. The higher heating values of the biomass of the plants studied were all within a narrow range (16.03–18.75 MJ kg−1), while their biochemical methane potentials ranged from 86.0 to 227.4 mL CH4 (g VS)−1. The anaerobic degradation was not influenced by the presence of trace elements in the plants, but the mineral content (mainly Na) negatively affected the potential thermal energy released by combustion (HHV). The highest annual energy yields from biogas or combustion could be obtained by the cultivation of Phragmites australis and Arundo donax, followed by Piptatherum miliaceum. Both options can be considered to be suitable final destinations for the biomass obtained in the phytostabilization of trace element-contaminated soils and may contribute to the implementation of these remediation techniques in Mediterranean areas.


2012 ◽  
Vol 223-224 ◽  
pp. 63-71 ◽  
Author(s):  
Rafael Clemente ◽  
David J. Walker ◽  
Tania Pardo ◽  
Domingo Martínez-Fernández ◽  
M. Pilar Bernal

2006 ◽  
Vol 144 (1) ◽  
pp. 93-100 ◽  
Author(s):  
Zuzana Fischerová ◽  
Pavel Tlustoš ◽  
Jiřina Száková ◽  
Kornelie Šichorová
Keyword(s):  

2005 ◽  
Vol 4 (4) ◽  
pp. 383-387 ◽  
Author(s):  
Midrar-ul-Haq . ◽  
Riaz A. Khattak . ◽  
Haji Khan Puno . ◽  
M. Saleem Saif . ◽  
Kazi Suleman Memon . ◽  
...  

1974 ◽  
Vol 40 (2) ◽  
pp. 397-403 ◽  
Author(s):  
C. T. Horovitz ◽  
H. H. Schock ◽  
L. A. Horovitz-Kisimova
Keyword(s):  

2012 ◽  
Vol 113 ◽  
pp. 106-111 ◽  
Author(s):  
Jaume Bech ◽  
Paola Duran ◽  
Núria Roca ◽  
Wilfredo Poma ◽  
Isidoro Sánchez ◽  
...  

2021 ◽  
Vol 21 (4) ◽  
pp. 1769-1784
Author(s):  
Milena Kosiorek ◽  
Mirosław Wyszkowski

Abstract Aim The study was undertaken to determine the effect of amendments used in remediation of cobalt-contaminated soil on the macroelement content of all organs of spring barley (the main crop) and white mustard (the after-crop). Methods In the experiment, six blocks were selected: without amendments; with manure (bovine, granulated); clay; charcoal; zeolite; and with calcium oxide (50%). In each of the blocks, increasing doses of cobalt were applied: 0, 20, 40, 80, 160, and 320 mg kg−1 of soil. Results Cobalt-contaminated soil and amendments application had a significant effect on macroelement content of all organs of both plants. Conclusions In blocks without amendments, 80 mg Co kg−1 contributed the most increase in nitrogen, sodium, and calcium contents of both organs of spring barley. Cobalt-contaminated soil increased content of all macroelements in white mustard organs. Application of amendments to soil had strong impact on phosphorus, sodium, and calcium contents of organs of both plant species, compared to the control block (without amendments). Among the amendments, manure had the greatest effect on the content of macroelements in plants. Manure increased phosphorus, potassium, and sodium contents of all organs of both plants. The optimal content of macroelements is extremely important for the growth and development of plants, especially on soils contaminated with trace elements, including cobalt.


Sign in / Sign up

Export Citation Format

Share Document