scholarly journals Potential of the Biomass of Plants Grown in Trace Element-Contaminated Soils under Mediterranean Climatic Conditions for Bioenergy Production

Agronomy ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 1750
Author(s):  
María Pilar Bernal ◽  
Donatella Grippi ◽  
Rafael Clemente

Phytomanagement of trace element-contaminated soils combines sustainable soil remediation with the use of plant biomass for different applications. Consequently, phytostabilization using plant species useful for bioenergy production has recently received increasing attention. However, the water requirement of most of these species is a limitation for their use under Mediterranean climatic conditions. In this work, eight plant species growing naturally in mine soils contaminated by trace elements were evaluated for their use as bioenergy crops using thermochemical (combustion) and biochemical (anaerobic digestion) methods. The higher heating values of the biomass of the plants studied were all within a narrow range (16.03–18.75 MJ kg−1), while their biochemical methane potentials ranged from 86.0 to 227.4 mL CH4 (g VS)−1. The anaerobic degradation was not influenced by the presence of trace elements in the plants, but the mineral content (mainly Na) negatively affected the potential thermal energy released by combustion (HHV). The highest annual energy yields from biogas or combustion could be obtained by the cultivation of Phragmites australis and Arundo donax, followed by Piptatherum miliaceum. Both options can be considered to be suitable final destinations for the biomass obtained in the phytostabilization of trace element-contaminated soils and may contribute to the implementation of these remediation techniques in Mediterranean areas.

Agronomy ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 1367
Author(s):  
Isabel Martínez-Alcalá ◽  
Rafael Clemente ◽  
María Pilar Bernal

Trace-element-contaminated soils cause environmental concern and represent a source of contamination for surrounding areas. Phytoremediation uses plants to diminish the environmental risks associated with this contamination. When the final aim is the extraction of the pollutants, this technique requires the use of plants that are able to accumulate high concentrations of the target elements in their aerial part, while producing high plant biomass. Here, pot experiments were carried out in order to determine the interaction between a hyperaccumulator (Nocaea caerulescens) and a metal excluder (Lupinus albus) or an accumulator (Brassica juncea) species regarding their trace element accumulation/exclusion capacity when sharing the rhizosphere. The plants were grown alone or were cocultivated in soils with different levels of trace element contamination. The Zn concentration in N. caerulescens plants was lower in cocultivation with B. juncea than when they were grown alone, indicating competition between the two species for Zn uptake. Contrastingly, when grown with L. albus, the Zn concentrations in N. caerulescens plants were higher than when grown alone. Therefore, under climatic conditions adequate for N. caerulescens growth, cocultivation with L. albus could favor Zn phytoextraction, while in the case of B. juncea, crop rotation rather than cocultivation is recommended for efficient phytoextraction.


2021 ◽  
Vol 11 (4) ◽  
pp. 1769
Author(s):  
María Noelia Jiménez ◽  
Gianluigi Bacchetta ◽  
Francisco Bruno Navarro ◽  
Mauro Casti ◽  
Emilia Fernández-Ondoño

The use of plant species to stabilize and accumulate trace elements in contaminated soils is considered of great usefulness given the difficulty of decontaminating large areas subjected to mining for long periods. In this work, the bioaccumulation of trace elements is studied by relating the concentrations in leaves and roots of three plants of Mediterranean distribution (Dittrichia viscosa, Cistus salviifolius, Euphorbia pithyusa subsp. cupanii) with the concentrations of trace elements in contaminated and uncontaminated soils. Furthermore, in the case of D. viscosa, to know the concentration of each element by biomass, the pool of trace elements was determined both in the aerial part and in the roots. The bioaccumulation factor was not high enough in any of the species studied to be considered as phytoextractors. However, species like the ones studied in this work that live on soils with a wide range of concentration of trace elements and that develop a considerable biomass could be considered for stabilization of contaminated soils. The plant species studied in this work are good candidates for gentle-remediation options in the polluted Mediterranean.


2005 ◽  
Vol 4 (4) ◽  
pp. 383-387 ◽  
Author(s):  
Midrar-ul-Haq . ◽  
Riaz A. Khattak . ◽  
Haji Khan Puno . ◽  
M. Saleem Saif . ◽  
Kazi Suleman Memon . ◽  
...  

2012 ◽  
Vol 113 ◽  
pp. 106-111 ◽  
Author(s):  
Jaume Bech ◽  
Paola Duran ◽  
Núria Roca ◽  
Wilfredo Poma ◽  
Isidoro Sánchez ◽  
...  

1994 ◽  
Vol 2 (2) ◽  
pp. 133-146 ◽  
Author(s):  
Bal Ram Singh

Fertilizers, along with atmospheric deposition, are believed to contribute more than all other factors to the trace element burden of cultivated soils. This review will discuss trace elements in commercial fertilizer in relation to their transfer to soil–plant systems. Also, background levels in soils and the concentrations of trace elements in soils, phosphate rocks, and commercial fertilizers will be presented. Results from several short and long-term experiments indicated that the application of phosphate fertilizers to agricultural soils generally resulted in an increase of trace elements in soils and that the increase was most pronounced for Cd. The corresponding increase in plants was quite variable, ranging from no increase at all to a significant increase. The concentration of trace elements in plant species also showed a wide variation. The distribution and partitioning of trace elements among chemical associations in soils varied considerably for different elements. The highest percentage of Cd in soils, as estimated by sequential extraction, was associated with exchangeable fractions (25–41%), but the highest fraction of Zn (47%) was associated with resistant minerals. Uptake of trace elements by plants and solubility and mobility of these elements in the soil were affected to a greater extent by the plant species grown and soil pH, organic matter, and soil texture. Soil pH showed a significant but inverse relationship with the concentrations of most of the trace elements in plants. The addition of organic matter generally immobilized the trace elements in soils and caused reduction in plant uptake of most elements. A considerable proportion (up to 50%) of the total uptake of trace elements, and especially of Cd, was a result of atmospheric deposition. Ecological implications of contaminants in fertilizers and the resultant need for research are described.Key words: accumulation in soils, fertilizers, plant availability, soil properties, trace elements.


2021 ◽  
Vol 11 (2) ◽  
pp. 713
Author(s):  
Soroush Salmani-Ghabeshi ◽  
Ximena Fadic-Ruiz ◽  
Conrado Miró-Rodríguez ◽  
Eduardo Pinilla-Gil ◽  
Francisco Cereceda-Balic

The present work investigates the uptake of selected trace elements (Cu, Sb, As, Pb, Cd, Zn, Cr, Mn, Ni, V, and Co) from soil and their accumulation in the biomass samples (leaves and flowers) of three selected native plants (namely Oenothera picensis, OP; Sphaeralcea velutina, SV; and Argemone subfusiformis, AS) around an industrial area (Puchuncaví-Ventanas) located in the Puchuncaví valley, in the central region of Chile. Primary emission sources in the area come from a copper refinery, coal-fired power plants, and a set of 14 other different industrial facilities. Trace element measurements in the native plants of this area and the ability to transfer of these pollutants from soil to plants (transfer factor) have been assessed in order to identify the potential use of these plant species for phytoremediation. Preliminary results showed a high concentration of trace elements in the OP, SV, and AS samples. The concentration of these elements in the plants was found to be inversely correlated to the distance of the primary emission sources. Moreover, the high concentrations of trace elements such as Cu, As, Cr and V, upon the toxic limits in the native plant species, suggest the need for continuous monitoring of the region. The OP species was identified as the plant with the highest capacity for trace elements accumulation, which also showed higher accumulation potential in whole aerial parts than in leaves. Transfer factor values suggested that these native plants had phytoremediation potential for the elements Cu, Pb, As, Ni, and Cr. This study provides preliminary baseline information on the trace element compositions of important native plants and soil in the Puchuncaví-Ventanas area for phytoremediation purposes.


2019 ◽  
Vol 126 ◽  
pp. 220-230 ◽  
Author(s):  
Maria Pilar Bernal ◽  
Xiomar Gómez ◽  
Ruixue Chang ◽  
Elena Arco-Lázaro ◽  
Rafael Clemente

Toxics ◽  
2019 ◽  
Vol 7 (1) ◽  
pp. 3 ◽  
Author(s):  
Obinna Nworie ◽  
Junhao Qin ◽  
Chuxia Lin

The uptake of trace elements by wild herbaceous plants in a multiple trace element-contaminated site was investigated. The bioaccumulation factor (BF) of trace elements was markedly variable among the different plant species. On average, the BF for various trace elements was in the following decreasing order: Zn > Cu > Mn > Ni > As > Pb > Cr. The translocation factor among the investigated plant species was also considerably variable and showed the following decreasing order: Mn > Zn > Ni > Cu > Cr > As > Pb. Several hyperaccumulating plants were identified: Artemisia vulgaris for As, Mn and Zn, Phalaris arundinacea for Mn and Ni, Heracleum sphondylium for Cr and Zn, and Bistorta officinalis for Mn and Zn. The marked accumulation of trace elements in the plant tissue suggests that the site may not be suitable for urban agricultural production. The plant tissue-borne trace elements could affect microbial activities and consequently interfere with the ecosystem functioning in the affected areas.


Sign in / Sign up

Export Citation Format

Share Document