Strength degradation and anchoring behavior of rock mass in the fault fracture zone

2017 ◽  
Vol 76 (4) ◽  
Author(s):  
Haijian Su ◽  
Hongwen Jing ◽  
Honghui Zhao ◽  
Liyuan Yu ◽  
Yingchao Wang
2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Yushun Yang ◽  
Zhiming Fang ◽  
Guangying Ji ◽  
Baigao Zhao ◽  
Sijiang Wei

We aim at the problem of the large deformation and difficult control of surrounding rock when passing through a fault fracture zone in the centralized rail transportation lane along the south wing of Xinyi Coal Mine; the stress environment and failure mechanism of surrounding rock are analyzed through field investigation, numerical simulation, and field industrial test. The instability of the surrounding rock in the fault fracture zone was considered to be the result of the joint effect of the surrounding rock fracture development, lithology differences, water gushing occurrences, low strength of the original support, high in situ stress, and fault-related tectonic stress. Rock blocks are collected on site at the fracture zone, and the remoulded samples are prepared for mechanical experiments in the laboratory. The basic mechanical parameters of the roadway passing through silty mudstone, sand-mudstone interlayer, and fine sandstone were analyzed. A three-dimensional model is established to analyze the distributions of the stress, deformation, and plastic area in the surrounding rock mass after the tunnel passes through, considering both a single-rock mass and a multilayer-rock mass. Based on the above analysis, the “closed support + shotcrete + grouting + anchor mesh cable coupling support” is proposed. Three stations were arranged on site to observe the mine pressure, and the field industrial test shows that, within the 100 days of observation, the maximum roof-to-floor convergence is 38 mm, while the maximum horizontal convergence is 56 mm. The overall reinforcement effect of the roadway is good, the surface is smooth, and there is no phenomenon of concrete cracking and bolt fracture.


2021 ◽  
Vol 14 (11) ◽  
Author(s):  
Jiwen Bai ◽  
Shaolong Duan ◽  
Rentai Liu ◽  
Lin Xin ◽  
Jiawei Tian ◽  
...  

2016 ◽  
Vol 75 (8) ◽  
Author(s):  
Jianbing Peng ◽  
Yanqiu Leng ◽  
Xinghua Zhu ◽  
Di Wu ◽  
Xiao Tong

2021 ◽  
Vol 140 ◽  
pp. 104467
Author(s):  
Kaihang Han ◽  
Lin Wang ◽  
Dong Su ◽  
Chengyu Hong ◽  
Xiangsheng Chen ◽  
...  

2018 ◽  
Vol 2018 ◽  
pp. 1-12 ◽  
Author(s):  
T. Yang ◽  
Q. S. Ye

Constitutive effect is extremely important for the research of the mechanical behavior of surrounding rock in hydraulic fracturing engineering. In this paper, based on the triaxial test results, a new elastic-peak plastic-softening-fracture constitutive model (EPSFM) is proposed by considering the plastic bearing behavior of the rock mass. Then, the closed-form solution of a circular opening is deduced with the nonassociated flow rule under the cavity expansion state. Meanwhile, the parameters of the load-bearing coefficient and brittles coefficient are introduced to describe the plastic bearing capacity and strain-softening degrees of rock masses. When the above two parameters take different values, the new solution of EPSFM can be transformed into a series of traditional solutions obtained based on the elastic-perfectly plastic model (EPM), elastic-brittle plastic model (EBM), elastic-strain-softening model (ESM), and elastic-peak plastic-brittle plastic model (EPBM). Therefore, it can be applied to a wider range of rock masses. In addition, the correctness of the solution is validated by comparing with the traditional solutions. The effect of constitutive relation and parameters on the mechanical response of rock mass is also discussed in detail. The research results show that the fracture zone radii of circular opening presents the characteristic of EBM > EPBM > ESM > EPSFM; otherwise, it is on the contrast for the critical hydraulic pressure at the softening-fracture zone interface; the postpeak failure radii show a linear decrease with the increase of load-bearing coefficients or a nonlinear increase with the increasing brittleness coefficient. This study indicates that the rock mass with a certain plastic bearing capacity is more difficult to be cracked by hydraulic fracturing; the higher the strain-softening degree of rock mass is, the easier it is to be cracked. From a practical point of view, it provides very important theoretical values for determining the fracture range of the borehole and providing a design value of the minimum pumping pressure in hydraulic fracturing engineering.


2013 ◽  
Vol 671-674 ◽  
pp. 1114-1121
Author(s):  
Zhi Peng Li ◽  
Shu Cai Li ◽  
Qing Song Zhang ◽  
De Ming Wang ◽  
Bing Hui ◽  
...  

Water-bearing fault of subsea tunnel has fissure water developed, fractured surrounding rock with low strength, which gets a risk of sudden water inflow and affects the tunnel security. This paper takes the geological forecast and treatment for water-bearing fault of the Qingdao kiaochow bay subsea tunnel for example, according to the water assignment characteristics, using the detect method of TEM and advance borehole to make accurate decision for the position of water-bearing body、the scale of fracture zone and the inflow of water. Through the analysis of results, the grouting form, materials and parameters are chosen and adjusted. The grouting material seals the water flowing fracture, forming water-stopping curtain outside tunnel excavation contour line and strengthening the fault fracture zone to improve the stability of rock.


2011 ◽  
Vol 413 ◽  
pp. 166-169 ◽  
Author(s):  
Jin Xing Lai ◽  
Chi Liu ◽  
Fei Zhou

In order to analyze the stability of the tunnel construction of the fault fracture zone, by adopting the three-dimensional finite element, the paper analyzed the construction process of the Qingshashan Tunnel passing through the F5 fault fracture zone, and the rules and characteristics of deformation, stress distribution and its rules of changes, and the distribution range of the failure zone of the surrounding rock in the construction process, which would have important significance in guiding tunnel construction. Studies have shown that the three-dimensional finite element has a broad application prospect in tunnel projects.


Author(s):  
Tingyao Wu ◽  
Zhou Chuanbo ◽  
Jiang Nan ◽  
Xia Yuqing ◽  
Bin Zhu

As for the slope with fault fracture zone, the fault fracture zone is the main sliding surface, whose shear strength parameter is the main calculation parameter of landslide occurrence. In this paper, shaking table model tests and damage theory were used to study the change of shear strength and mechanical cumulative damage model of fault fracture zone under the blasting vibration cyclic load. At first, the slope of Daye Iron Mine is selected as a case to study the shear strength weakening law of fault fracture zone by the similarity theory and the principle of the orthogonal test, in which the influence of the characteristics of vibration loading on the shear strength parameters of fault fracture zone with different thicknesses was studied. Secondly, by the assumption of Lemaitre strain equivalence and according to the extreme value characteristics of the normal stress-shear stress curve, the damage theory model of the fault fracture zone was reconstructed, and the microelement of fault was selected for analysis and divided into two parts, including damaged and undamaged materials. Finally, the results of the shaking table model tests were compared with the results of the shear cumulative damage model to verify the rationality of the theoretical model. Moreover, the predicted results of the theoretical model can better reflect the degradation trend of the fault fracture zone with the loading amplitude, normal stress, and loading times. It can be used as a reference for slope stability prediction under the action of cumulative static and dynamic loads.


Sign in / Sign up

Export Citation Format

Share Document