Optimal mixing scheme for graphite–bentonite mixtures used as buffer materials in high-level waste repositories

2021 ◽  
Vol 80 (17) ◽  
Author(s):  
Yun-zhi Tan ◽  
Zi-yang Xie ◽  
Fan Peng ◽  
Fang-hong Qian ◽  
Hua-jun Ming
1986 ◽  
Vol 84 ◽  
Author(s):  
V. M. Oversby

AbstractPerformance assessment calculations are required for high level waste repositories for a period of 10,000 years under NRC and EPA regulations. In addition, the Siting Guidelines (IOCFR960) require a comparison of sites following site characterization and prior to final site selection to be made over a 100,000 year period. In order to perform the required calculations, a detailed knowledge of the physical and chemical processes that affect waste form performance will be needed for each site. While bounding calculations might be sufficient to show compliance with the requirements of IOCFR60 and 40CFRI91, the site comparison for 100,000 years will need to be based on expected performance under site specific conditions. The only case where detailed knowledge of waste form characteristics in the repository would not be needed would be where radionuclide travel times to the accessible environment can be shown to exceed 100,000 years. This paper will review the factors that affect the release of radionuclides from spemt fuel under repository conditions, summarize our present state of knowledge, and suggest areas where more work is needed in order to support the performance assessment calculations.


2003 ◽  
Vol 807 ◽  
Author(s):  
Paul Wersin ◽  
Lawrence H. Johnson ◽  
Bernhard Schwyn

ABSTRACTRedox conditions were assessed for a spent fuel and high-level waste (SF/HLW) and an intermediate-level waste (ILW) repository. For both cases our analysis indicates permanently reducing conditions after a relatively short oxic period. The canister-bentonite near field in the HLW case displays a high redox buffering capacity because of expected high activity of dissolved and surface-bound Fe(II). This is contrary to the cementitious near field in the ILW case where concentrations of dissolved reduced species are low and redox reactions occur primarily via solid phase transformation processes.For the bentonite-canister near field, redox potentials of about -100 to -300 mV (SHE) are estimated, which is supported by recent kinetic data on U, Tc and Se interaction with reduced iron systems. For the cementitious near field, redox potentials of about -200 to -800 mV are estimated, which reflects the large uncertainties related to this alkaline environment.


1992 ◽  
Vol 294 ◽  
Author(s):  
Felton W. Bingham

ABSTRACTThe regulations that currently govern repositories for spent fuel and high-level waste require demonstrations that are sometimes described as impossible to make. To make them will require an understanding of the current and the future phenomena at repository sites; it will also require credible estimates of the probabilities that the phenomena will occur in the distant future. Experts in many fields—earth sciences, statistics, numerical modeling, and the law—have questioned whether any amount of data collection can allow modelers to meet these requirements with enough confidence to satisfy the regulators. In recent years some performance assessments have begun to shed light on this question because they use results of actual site investigations. Although these studies do not settle the question definitively, a review of a recent totalsystem assessment suggests that compliance may be possible to demonstrate. The review also suggests, however, that the demonstration can be only at the “reasonable” levels of assurance mentioned, but not defined, in the regulations.


1979 ◽  
Author(s):  
R.A. Heckman ◽  
T. Holdsworth ◽  
D. Isherwood ◽  
D.F. Towse ◽  
N.L. Dayem

1979 ◽  
Author(s):  
R.A. Heckman ◽  
T. Holdsworth ◽  
D.F. Towse

1984 ◽  
Vol 44 ◽  
Author(s):  
Bryan J. Travis ◽  
H. E. Nuttall

AbstractRecently, there is increased concern that radiocolloids may act as a rapid transport mechanism for the release of radionuclides from high-level waste repositories. The role of colloids is, however, controversial because the necessary data and assessment methodology have been limited. To quantitatively assess the role of colloids, the TRACR3D transport code has been enhanced by the addition of the population balance equations. The code was tested against the experimental laboratory column data of Avogadro et al. Next a low-level radioactive waste site was investigated to explore whether colloid migration could account for the unusually rapid transport of plutonium and americium observed. The nature and modeling of radiocolloids are discussed along with site simulation results from the TRACR3D code.


1981 ◽  
Vol 6 ◽  
Author(s):  
Richard G. Strickert ◽  
Dhanpat Rai

ABSTRACTKnowledge of Pu solid phases present in nuclear wastes is important for predicting the geochemical behavior of Pu. Thermodynamic data and experimental measurements using discrete Pu compounds, Pu-doped borosilicate glasses (simulating a high-level waste form), and Pu contaminated sediments suggest that PuO2(c) is very stable and is expected to be present in the repository. The solubility of the stable phase, such as PuO2(c), can be used to predict the maximum Pu concentration in solutions for long-term safety assessment of nuclear waste repositories.


Sign in / Sign up

Export Citation Format

Share Document