Processing Techniques to Develop Metallic Materials with Superior Mechanical Properties

2019 ◽  
Vol 72 (10) ◽  
pp. 2877-2891
Author(s):  
Arun Kumar ◽  
Uma Thanu Subramonia Pillai ◽  
Amirthalingam Srinivasan
2019 ◽  
Vol 9 (3) ◽  
pp. 3926-3933 ◽  

Although, there have been numerous efforts in synthesis of polymers, their mechanical properties have limited their applications. Graphene has been investigated for excellent properties such as superior mechanical properties, high thermal conductivity that has attracted the attention of scientific community to employ graphene as a filler material in polymeric matrices to form composites with multi-functional capabilities. The excellent properties possessed by Graphene has motivated users to fabricate flexible nanocomposites that can be used for applications requiring superior mechanical, chemical and thermal performances. Characteristics of both the components if explored synergistically through proper structural and interfacial organization. The investigation in this direction has resulted into combination of graphene with variety of polymeric materials and hence the development of different graphene-based nanocomposites. The present work reviews the application of graphene-based nanocomposites in the biomedical domain. With this objective, the polymeric matrices suitable for biomedical applications as well as the techniques of producing graphene polymeric nanocomposites have been discussed. Finally the application particularly in biosensing, wound healing and drug delivery system has been discussed.


2007 ◽  
Vol 124-126 ◽  
pp. 1325-1328
Author(s):  
Dong Hyuk Shin ◽  
Duck Young Hwang ◽  
Jung Yong Ahn ◽  
Kyung Tae Park ◽  
Yong Suk Kim ◽  
...  

Ultrafine grained materials fabricated by severe plastic deformation exhibit both superior and inferior mechanical properties, as the prominent structural materials, compared to coarse grained counterparts. The superior mechanical properties are ultrahigh strength and exceptional ductility at high temperatures (i.e., superplasticity). The inferior mechanical properties are lack of strain hardenability and room temperature ductility. In this study, the relationship between microstructure and mechanical properties of ultrafine grained materials fabricated by severe plastic deformation is investigated in order to provide insight broadening their future applicability.


Author(s):  
M. A. McCoy

Transformation toughening by ZrO2 inclusions in various ceramic matrices has led to improved mechanical properties in these materials. Although the processing of these materials usually involves standard ceramic powder processing techniques, an alternate method of producing ZrO2 particles involves the devtrification of a ZrO2-containing glass. In this study the effects of glass composition (ZrO2 concentration) and heat treatment on the morphology of the crystallization products in a MgO•Al2•SiO2•ZrO2 glass was investigated.


Author(s):  
Romaneh Jalilian ◽  
David Mudd ◽  
Neil Torrez ◽  
Jose Rivera ◽  
Mehdi M. Yazdanpanah ◽  
...  

Abstract The sample preparation for transmission electron microscope can be done using a method known as "lift-out". This paper demonstrates a method of using a silver-gallium nanoneedle array for a quicker sharpening process of tungsten probes with better sample viewing, covering the fabrication steps and performance of needle-tipped probes for lift-out process. First, an array of high aspect ratio silver-gallium nanoneedles was fabricated and coated to improve their conductivity and strength. Then, the nanoneedles were welded to a regular tungsten probe in the focused ion beam system at the desired angle, and used as a sharp probe for lift-out. The paper demonstrates the superior mechanical properties of crystalline silver-gallium metallic nanoneedles. Finally, a weldless lift-out process is described whereby a nano-fork gripper was fabricated by attaching two nanoneedles to a tungsten probe.


Soft Matter ◽  
2016 ◽  
Vol 12 (24) ◽  
pp. 5420-5428 ◽  
Author(s):  
Ming Zhong ◽  
Yi-Tao Liu ◽  
Xiao-Ying Liu ◽  
Fu-Kuan Shi ◽  
Li-Qin Zhang ◽  
...  

2014 ◽  
Vol 891-892 ◽  
pp. 1639-1644 ◽  
Author(s):  
Kazutaka Mukoyama ◽  
Koushu Hanaki ◽  
Kenji Okada ◽  
Akiyoshi Sakaida ◽  
Atsushi Sugeta ◽  
...  

The aim of this study is to develop a statistical estimation method of S-N curve for iron and structural steels by using their static mechanical properties. In this study, firstly, the S-N data for pure iron and structural steels were extracted from "Database on fatigue strength of Metallic Materials" published by the Society of Materials Science, Japan (JSMS) and S-N curve regression model was applied based on the JSMS standard, "Standard Evaluation Method of Fatigue Reliability for Metallic Materials -Standard Regression Method of S-N Curve-". Secondly, correlations between regression parameters and static mechanical properties were investigated. As a result, the relationship between the regression parameters and static mechanical properties (e.g. fatigue limit E and static tensile strength σB) showed strong correlations, respectively. Using these correlations, it is revealed that S-N curve for iron and structural steels can be predicted easily from the static mechanical properties.


Sign in / Sign up

Export Citation Format

Share Document