Metallic Nanoneedles Arrays for TEM Sample Preparation “Lift-Out”

Author(s):  
Romaneh Jalilian ◽  
David Mudd ◽  
Neil Torrez ◽  
Jose Rivera ◽  
Mehdi M. Yazdanpanah ◽  
...  

Abstract The sample preparation for transmission electron microscope can be done using a method known as "lift-out". This paper demonstrates a method of using a silver-gallium nanoneedle array for a quicker sharpening process of tungsten probes with better sample viewing, covering the fabrication steps and performance of needle-tipped probes for lift-out process. First, an array of high aspect ratio silver-gallium nanoneedles was fabricated and coated to improve their conductivity and strength. Then, the nanoneedles were welded to a regular tungsten probe in the focused ion beam system at the desired angle, and used as a sharp probe for lift-out. The paper demonstrates the superior mechanical properties of crystalline silver-gallium metallic nanoneedles. Finally, a weldless lift-out process is described whereby a nano-fork gripper was fabricated by attaching two nanoneedles to a tungsten probe.

Author(s):  
R.J. Young ◽  
P.D. Carleson ◽  
X. Da ◽  
T. Hunt ◽  
J.F. Walker

Abstract Recent advances in the methods of preparing transmission electron microscope (TEM) samples using the focused ion beam (FIB) are presented. In particular, automation of TEM sample preparation is described. These automation methods, coupled with advances in ion column design, make it possible to prepare samples more efficiently and with less user involvement, thereby increasing FIB system utilization. Issues relating to sample handling and process-induced artifacts are also discussed.


Author(s):  
Corey Senowitz ◽  
Hieu Nguyen ◽  
Ruby Vollrath ◽  
Caiwen Yuan ◽  
Fati Rassolzadeh ◽  
...  

Abstract The modern scanning transmission electron microscope (S/TEM) has become a key technology and is heavily utilized in advanced failure analysis (FA) labs. It is well equipped to analyze semiconductor device failures, even for the latest process technology nodes (20nm or less). However, the typical sample preparation process flow utilizes a dual beam focused ion beam (FIB) microscope for sample preparation, with the final sample end-pointing monitored using the scanning electron microscope (SEM) column. At the latest technology nodes, defect sizes can be on the order of the resolution limit for the SEM column. Passive voltage contrast (PVC) is an established FA technique for integrated circuit (IC) FA which can compensate for this resolution deficiency in some cases. In this paper, PVC is applied to end-pointing cross-sectional S/TEM samples on the structure or defect of interest to address the SEM resolution limitation.


Author(s):  
Richard J. Young ◽  
Michael P. Bernas ◽  
Mary V. Moore ◽  
Young-Chung Wang ◽  
Jay P. Jordan ◽  
...  

Abstract The dual-beam system, which combines a high-resolution scanning electron microscope (SEM) with a focused ion beam (FIB), allows sample preparation, imaging, and analysis to be accomplished in a single tool. This paper discusses how scanning transmission electron microscopy (STEM) with the electron beam enhances the analysis capabilities of the dualbeam. In particular, it shows how, using the combination of in-situ sample preparation and integrated SEM-STEM imaging, more failure analysis and characterization problems can be solved in the dual-beam without needing to use the Ångstrom-level capabilities of the transmission electron microscope (TEM).


2000 ◽  
Vol 6 (S2) ◽  
pp. 512-513 ◽  
Author(s):  
R. J. Young

The use of focused ion beam (FIB) systems is well established as a sample preparation and imaging tool in a wide range of applications, most notably, in the semiconductor and data storage industries, but also within material and biological sciences (Figs. 1-3). The real benefit of the FIB is that the same ion beam that is used for material removal and deposition is also used for imaging the sample, which results in highly precise and localized sample preparation. In addition, the FIB can be used to prepare samples through multiple layers with different material properties, and allows the rest of specimen to be kept intact for further analysis or processing. FIB is most commonly used to prepare samples for the transmission electron microscope (TEM), the scanning electron microscope (SEM), and for the FIB itself. The FIB, which is an imaging tool in its own right, can produce secondary-electron and -ion images and collect secondary ion mass spectrometry (SIMS) data.


2005 ◽  
Vol 13 (6) ◽  
pp. 40-41
Author(s):  

"The most advantageous feature of the ex-situ lift out method is throughput."A great deal of emphasis is placed on "throughput" in the microprocessor industry. Wafer sizes are getting larger and the costs of building them have increased astronomically. The transmission electron microscope (TEM) has become the essential tool for examining current microprocessor products. The TEM can only be effective if it has properly prepared specimens to put into it. In order to achieve the highest specimen preparation spatial resolution, the microprocessor industry has turned to focused ion beam (FIB) tools, either single or dual column, for TEM specimen preparation in applications ranging from process control to failure analysis, and on to semiconductor device metrology.


Author(s):  
Ching Shan Sung ◽  
Hsiu Ting Lee ◽  
Jian Shing Luo

Abstract Transmission electron microscopy (TEM) plays an important role in the structural analysis and characterization of materials for process evaluation and failure analysis in the integrated circuit (IC) industry as device shrinkage continues. It is well known that a high quality TEM sample is one of the keys which enables to facilitate successful TEM analysis. This paper demonstrates a few examples to show the tricks on positioning, protection deposition, sample dicing, and focused ion beam milling of the TEM sample preparation for advanced DRAMs. The micro-structures of the devices and samples architectures were observed by using cross sectional transmission electron microscopy, scanning electron microscopy, and optical microscopy. Following these tricks can help readers to prepare TEM samples with higher quality and efficiency.


Author(s):  
H. J. Bender ◽  
R. A. Donaton

Abstract The characteristics of an organic low-k dielectric during investigation by focused ion beam (FIB) are discussed for the different FIB application modes: cross-section imaging, specimen preparation for transmission electron microscopy, and via milling for device modification. It is shown that the material is more stable under the ion beam than under the electron beam in the scanning electron microscope (SEM) or in the transmission electron microscope (TEM). The milling of the material by H2O vapor assistance is strongly enhanced. Also by applying XeF2 etching an enhanced milling rate can be obtained so that both the polymer layer and the intermediate oxides can be etched in a single step.


Author(s):  
Jian-Shing Luo ◽  
Hsiu Ting Lee

Abstract Several methods are used to invert samples 180 deg in a dual beam focused ion beam (FIB) system for backside milling by a specific in-situ lift out system or stages. However, most of those methods occupied too much time on FIB systems or requires a specific in-situ lift out system. This paper provides a novel transmission electron microscopy (TEM) sample preparation method to eliminate the curtain effect completely by a combination of backside milling and sample dicing with low cost and less FIB time. The procedures of the TEM pre-thinned sample preparation method using a combination of sample dicing and backside milling are described step by step. From the analysis results, the method has applied successfully to eliminate the curtain effect of dual beam FIB TEM samples for both random and site specific addresses.


Author(s):  
Chin Kai Liu ◽  
Chi Jen. Chen ◽  
Jeh Yan.Chiou ◽  
David Su

Abstract Focused ion beam (FIB) has become a useful tool in the Integrated Circuit (IC) industry, It is playing an important role in Failure Analysis (FA), circuit repair and Transmission Electron Microscopy (TEM) specimen preparation. In particular, preparation of TEM samples using FIB has become popular within the last ten years [1]; the progress in this field is well documented. Given the usefulness of FIB, “Artifact” however is a very sensitive issue in TEM inspections. The ability to identify those artifacts in TEM analysis is an important as to understanding the significance of pictures In this paper, we will describe how to measure the damages introduced by FIB sample preparation and introduce a better way to prevent such kind of artifacts.


Sign in / Sign up

Export Citation Format

Share Document