Rheological and Thermal Investigation of Industrially Processed Glass Fiber Blended with Linear Low-Density Polyethylene for Rotational Molding Process

Author(s):  
Nikita Gupta ◽  
PL. Ramkumar
2020 ◽  
pp. 096739112095324
Author(s):  
Nikita Gupta ◽  
PL. Ramkumar

Rotational Molding is a plastic manufacturing process mainly implemented to produce stress free hollow products. Linear Low Density Polyethylene (LLDPE) is widely preferred as base resin for molding roto molded product, but it displays moderate value in some critical applications where strength is the major criteria. Additives can fill the gap in sustaining the necessary strength needed. In the present work, an attempt has been made to analyze the optimum percentage of coir reinforced with LLDPE for rotational molding technique to provide requisite processability for rotational molding process. Coir in its powder form is mixed at concentrations varying in the range of 3% to 20% with respect to LLDPE. In order to justify the prerequisite of processability for rotational molding, various experiments namely FTIR, MFI, rheology and thermal analysis were conducted. FTIR suggested the range of 5% to 15% wherein the significance of LLDPE and coir peaks can be observed. MFI test supported FTIR result which ended in considering 3% to 12% by weight ratio suitable in terms of flow ability. Rheological and thermal analysis subjecting to shear and heat parameter respectively, confirmed the range of 10 weight percentage of coir or below is suitable in terms of material processability. From the experimental results, it is concluded that 10% or less concentration of coir fiber in LLDPE as an optimum range of blend yielding better processability for rotational molding process.


2017 ◽  
Vol 29 (1) ◽  
pp. 52-60 ◽  
Author(s):  
Abdulmajeed M. Alqaflah ◽  
Muhammad L. Alotaibi ◽  
Jiyad N. Aldossery ◽  
Mohammed S. Alghamdi ◽  
Fares D. Alsewailem

Polymers ◽  
2020 ◽  
Vol 12 (5) ◽  
pp. 1004 ◽  
Author(s):  
Aleksander Hejna ◽  
Mateusz Barczewski ◽  
Jacek Andrzejewski ◽  
Paulina Kosmela ◽  
Adam Piasecki ◽  
...  

Application of lignocellulosic fillers in the manufacturing of wood polymer composites (WPCs) is a very popular trend of research, however it is still rarely observed in the case of rotational molding. The present study aimed to analyze the impact of wheat bran content (from 2.5 wt.% to 20 wt.%) on the performance of rotationally-molded composites based on a linear low-density polyethylene (LLDPE) matrix. Microscopic structure (scanning electron microscopy), as well as physico-mechanical (density, porosity, tensile performance, hardness, rebound resilience, dynamic mechanical analysis), rheological (oscillatory rheometry) and thermo-mechanical (Vicat softening temperature) properties of composites were investigated. Incorporation of 2.5 wt.% and 5 wt.% of wheat bran did not cause significant deterioration of the mechanical performance of the material, despite the presence of ‘pin-holes’ at the surface. Values of tensile strength and rebound resilience were maintained at a very similar level, while hardness was slightly decreased, which was associated with the porosity of the structure. Higher loadings resulted in the deterioration of mechanical performance, which was also expressed by the noticeable rise of the adhesion factor. For lower loadings of filler did not affect the rheological properties. However, composites with 10wt.% and 20 wt.% also showed behavior suitable for rotational molding. The presented results indicate that the manufacturing of thin-walled products based on wood polymer composites via rotational molding should be considered a very interesting direction of research.


2021 ◽  
Vol 1021 ◽  
pp. 290-298
Author(s):  
Abduati Elnaid ◽  
N.Z. Noriman

The effect of different content of steric acid (3, 6 and 9 wt.%) on the mechanical properies (tensile, flexural and impact properties) and morphology of linear low-density polyethylene / date seeds (LLDPE/DS) composites were evaulated in this research. The composites were produced by using extrusion followed by injuction molding process. Results presented that the addition of steric acid at 3 wt.% to the composite has shown highest tensile strength and elongation at break as compared to other treated samples. This is due to the improvement on the fiber surface in presence of SA. However, the tensile strength and elongation at break decreased thereafter treatment with 6% and 9% of SA. Furthermore, the flexural and impact properties have shown the same trend of the tensile properties, this was consistent with the results shown on SEM micrographs.


Sign in / Sign up

Export Citation Format

Share Document