Optimization of the Die Forging Parameters of 21-4N Heat-Resistant Steel by Processing Maps

Author(s):  
Xiaomin Huang ◽  
Yong Zang ◽  
Ben Guan ◽  
Hongchao Ji
Materials ◽  
2018 ◽  
Vol 12 (1) ◽  
pp. 89 ◽  
Author(s):  
Yiming Li ◽  
Hongchao Ji ◽  
Wangda Li ◽  
Yaogang Li ◽  
Weichi Pei ◽  
...  

Abstract: The hot deformation behavior of 21-4N heat-resistant steel was studied by hot compression test in a deformation temperature range of 1000–1180 °C, a strain rate range of 0.01–10 s−1 and a deformation degree of 60%, and the stress-strain curves were obtained. The functional relationship between flow stress and process parameters (deformation degree, deformation temperature, strain rate, etc.) of 21-4N heat-resistant steel during hot deformation was explored, the constitutive equation of peak stress was established, and its accuracy was verified. Based on the dynamic material model, the energy dissipation maps and destabilization maps of 21-4N heat-resistant steel were established at strains of 0.2, 0.4 and 0.6, and processing maps were obtained by their superposition. Within the deformation temperature range of 1060~1120°C and a strain rate range of 0.01–0.1 s−1, there is a stable domain with the peak efficiency of about 0.5. The best hot working parameters (strain rate and deformation temperature) of 21-4N heat-resistant steel are determined by the stable and instable domain in the processing maps, which are in the deformation temperature range of 1120–1180 °C and the strain rate range of 0.01–10 s−1.


2018 ◽  
Vol 2018 (46) ◽  
pp. 34-37
Author(s):  
I. B. Ivasenko ◽  
◽  
O. R. Berehulyak ◽  
R. A. Vorobel ◽  
◽  
...  

2021 ◽  
Vol 64 ◽  
pp. 1070-1076
Author(s):  
N.G. Razumov ◽  
D.V. Masaylo ◽  
A.O. Silin ◽  
E.V. Borisov ◽  
N.E. Ozerskoy ◽  
...  

2010 ◽  
Vol 28 ◽  
pp. 489-491 ◽  
Author(s):  
Longmei WANG ◽  
Xiaojian DU ◽  
Yong GAN ◽  
Liu LIU ◽  
Xiaoning YE ◽  
...  

2007 ◽  
Vol 537-538 ◽  
pp. 303-306
Author(s):  
Tamás Bíró ◽  
László Dévényi

This paper shows the result of some metallographical examinations that have been carried out on low-alloyed Cr-Mo-V heat resistant steel. The aim of this research is to present and compare the advantages and disadvantages of the mainly applied metallographical methods. These techniques are optical microscopy, scanning electron microscopy, replica method and special applications of these methods. We have proved that using the investigated methods together gives much more information about the lifetime of the specimen than using these techniques particularly.


Sign in / Sign up

Export Citation Format

Share Document