The mean shift method of chaotic sequences in the study of compressive sensing

2016 ◽  
Vol 8 (5) ◽  
pp. 1643-1654 ◽  
Author(s):  
Guoming Chen ◽  
Qiang Chen ◽  
Shun Long ◽  
Weiheng Zhu
Mathematics ◽  
2019 ◽  
Vol 7 (9) ◽  
pp. 771
Author(s):  
Ye Tian ◽  
Yasunari Yokota

The mean-shift method is a convenient mode-seeking method. Using a principle of the sample mean over an analysis window, or kernel, in a data space where samples are distributed with bias toward the densest direction of sample from the kernel center, the mean-shift method is an attempt to seek the densest point of samples, or the sample mode, iteratively. A smaller kernel leads to convergence to a local mode that appears because of statistical fluctuation. A larger kernel leads to estimation of a biased mode affected by other clusters, abnormal values, or outliers if they exist other than in the major cluster. Therefore, optimal selection of the kernel size, which is designated as the bandwidth in many reports of the literature, represents an important problem. As described herein, assuming that the major cluster follows a Gaussian probability density distribution, and, assuming that the outliers do not affect the sample mode of the major cluster, and, by adopting a Gaussian kernel, we propose a new mean-shift by which both the mean vector and covariance matrix of the major cluster are estimated in each iteration. Subsequently, the kernel size and shape are updated adaptively. Numerical experiments indicate that the mean vector, covariance matrix, and the number of samples of the major cluster can be estimated stably. Because the kernel shape can be adjusted not only to an isotropic shape but also to an anisotropic shape according to the sample distribution, the proposed method has higher estimation precision than the general mean-shift.


2020 ◽  
Vol 19 (6) ◽  
pp. 1976-1988 ◽  
Author(s):  
Shuting Wan ◽  
Xiong Zhang

Feature extraction and fault recognition of vibration signals are two important parts of bearing fault diagnosis. In this article, a fault diagnosis method based on teager energy entropy of each wavelet subband and improved fuzzy C-means is proposed. First, bearing vibration signal is decomposed into wavelet packet and normalized teager energy entropy feature matrix is constructed as clustering index. Principal component analysis is applied to the high-dimensional teager energy entropy feature matrix, and the principal components are determined by cumulative contribution rate to construct feature vectors. Then, the mean-shift method is used to search for the high probability density region of principal components so as to determine the cluster number and cluster center. Finally, fuzzy C-means is used to update the clustering center and membership value, and confirm the optimal clustering center and the type of clustering. Through simulated and experimental analysis, the proposed method has two advantages. The feature vector constructed by this method has better specificity than wavelet energy entropy. The initial clustering center of fuzzy C-means is confirmed by the mean-shift method, which can improve the clustering performance of fuzzy C-means and solve the misclassification without preknowing the number of categories.


2016 ◽  
Vol 348 ◽  
pp. 198-208 ◽  
Author(s):  
Youness Aliyari Ghassabeh ◽  
Frank Rudzicz

2016 ◽  
Vol 2016 ◽  
pp. 1-12 ◽  
Author(s):  
Santiago Tello-Mijares ◽  
Francisco Flores

The identification of pollen in an automated way will accelerate different tasks and applications of palynology to aid in, among others, climate change studies, medical allergies calendar, and forensic science. The aim of this paper is to develop a system that automatically captures a hundred microscopic images of pollen and classifies them into the 12 different species from Lagunera Region, Mexico. Many times, the pollen is overlapping on the microscopic images, which increases the difficulty for its automated identification and classification. This paper focuses on a method to segment the overlapping pollen. First, the proposed method segments the overlapping pollen. Second, the method separates the pollen based on the mean shift process (100% segmentation) and erosion by H-minima based on the Fibonacci series. Thus, pollen is characterized by its shape, color, and texture for training and evaluating the performance of three classification techniques: random tree forest, multilayer perceptron, and Bayes net. Using the newly developed system, we obtained segmentation results of 100% and classification on top of 96.2% and 96.1% in recall and precision using multilayer perceptron in twofold cross validation.


2011 ◽  
Vol 90-93 ◽  
pp. 2836-2839 ◽  
Author(s):  
Jian Cui ◽  
Dong Ling Ma ◽  
Ming Yang Yu ◽  
Ying Zhou

In order to extract ground information more accurately, it is important to find an image segmentation method to make the segmented features match the ground objects. We proposed an image segmentation method based on mean shift and region merging. With this method, we first segmented the image by using mean shift method and small-scale parameters. According to the region merging homogeneity rule, image features were merged and large-scale image layers were generated. What’s more, Multi-level image object layers were created through scaling method. The test of segmenting remote sensing images showed that the method was effective and feasible, which laid a foundation for object-oriented information extraction.


Author(s):  
Takayuki Nishimori ◽  
Toyohiro Hayashi ◽  
Shuichi Enokida ◽  
Toshiaki Ejima

Author(s):  
Zhipeng Li ◽  
Xiaolan Li ◽  
Ming Shi ◽  
Wenli Song ◽  
Guowei Zhao ◽  
...  

Snowboarding is a kind of sport that takes snowboarding as a tool, swivels and glides rapidly on the specified slope line, and completes all kinds of difficult actions in the air. Because the sport is in the state of high-speed movement, it is difficult to direct guidance during the sport, which is not conducive to athletes to find problems and correct them, so it is necessary to track the target track of snowboarding. The target tracking algorithm is the main solution to this task, but there are many problems in the existing target tracking algorithm that have not been solved, especially the target tracking accuracy in complex scenes is insufficient. Therefore, based on the advantages of the mean shift algorithm and Kalman algorithm, this paper proposes a better tracking algorithm for snowboard moving targets. In the method designed in this paper, in order to solve the problem, a multi-algorithm fusion target tracking algorithm is proposed. Firstly, the SIFT feature algorithm is used for rough matching to determine the fuzzy position of the target. Then, the good performance of the mean shift algorithm is used to further match the target position and determine the exact position of the target. Finally, the Kalman filtering algorithm is used to further improve the target tracking algorithm to solve the template trajectory prediction under occlusion and achieve the target trajectory tracking algorithm design of snowboarding.


Sign in / Sign up

Export Citation Format

Share Document