Remaining useful life prediction of integrated modular avionics using ensemble enhanced online sequential parallel extreme learning machine

Author(s):  
Gao Zehai ◽  
Ma Cunbao ◽  
Zhang Jianfeng ◽  
Xu Weijun
2020 ◽  
Vol 10 (3) ◽  
pp. 1062 ◽  
Author(s):  
Tarek Berghout ◽  
Leïla-Hayet Mouss ◽  
Ouahab Kadri ◽  
Lotfi Saïdi ◽  
Mohamed Benbouzid

The efficient data investigation for fast and accurate remaining useful life prediction of aircraft engines can be considered as a very important task for maintenance operations. In this context, the key issue is how an appropriate investigation can be conducted for the extraction of important information from data-driven sequences in high dimensional space in order to guarantee a reliable conclusion. In this paper, a new data-driven learning scheme based on an online sequential extreme learning machine algorithm is proposed for remaining useful life prediction. Firstly, a new feature mapping technique based on stacked autoencoders is proposed to enhance features representations through an accurate reconstruction. In addition, to attempt into addressing dynamic programming based on environmental feedback, a new dynamic forgetting function based on the temporal difference of recursive learning is introduced to enhance dynamic tracking ability of newly coming data. Moreover, a new updated selection strategy was developed in order to discard the unwanted data sequences and to ensure the convergence of the training model parameters to their appropriate values. The proposed approach is validated on the C-MAPSS dataset where experimental results confirm that it yields satisfactory accuracy and efficiency of the prediction model compared to other existing methods.


Author(s):  
Fang Liu ◽  
Yongbin Liu ◽  
Fenglin Chen ◽  
Bing He

Data-driven approaches have been proved effective for remaining useful life estimation of key components (bearings for example) in rotating machinery. In such approaches, it is important to determine an appropriate degradation indicator from the collected run-to-failure life cycle data. In this paper, a new degradation indicator is introduced based on the joint approximate diagonalization of eigen matrices algorithm. First, a matrix consisting of time domain, frequency domain, and time–frequency domain features extracted from the collected data instances is created. Then a two-layer joint approximate diagonalization of eigen matrices is introduced to transform the matrix to the advanced features (a vector) that represents the behavior of the bearing’s degradation. As an independent component analysis method, the designed two-layer joint approximate diagonalization of eigen matrices is able to eliminate the redundancy of the directly extracted features. Further, the obtained vector is input into an extreme learning machine to train a remaining useful life prediction model. Finally, a set of experimental cases are utilized to verify the presented method. Results show that the two-layer joint approximate diagonalization of eigen matrices is capable of exploring features that reflects the trend of bearing’s degradation state much better. And due to the easy parameter configuration and fast learning speed, the extreme learning machine is capable of training a model that can effectively predict the remaining useful life of the bearings.


Author(s):  
Renxiong Liu

Objective: Lithium-ion batteries are important components used in electric automobiles (EVs), fuel cell EVs and other hybrid EVs. Therefore, it is greatly important to discover its remaining useful life (RUL). Methods: In this paper, a battery RUL prediction approach using multiple kernel extreme learning machine (MKELM) is presented. The MKELM’s kernel keeps diversified by consisting multiple kernel functions including Gaussian kernel function, Polynomial kernel function and Sigmoid kernel function, and every kernel function’s weight and parameter are optimized through differential evolution (DE) algorithm. Results : Battery capacity data measured from NASA Ames Prognostics Center are used to demonstrate the prediction procedure of the proposed approach, and the MKELM is compared with other commonly used prediction methods in terms of absolute error, relative accuracy and mean square error. Conclusion: The prediction results prove that the MKELM approach can accurately predict the battery RUL. Furthermore, a compare experiment is executed to validate that the MKELM method is better than other prediction methods in terms of prediction accuracy.


Sign in / Sign up

Export Citation Format

Share Document