The effects of wind-driven waves and ocean spray on the drag coefficient and near-surface wind profiles over the ocean

2016 ◽  
Vol 35 (11) ◽  
pp. 79-85 ◽  
Author(s):  
Ting Zhang ◽  
Jinbao Song ◽  
Shuang Li ◽  
Liangui Yang
2015 ◽  
Vol 54 (10) ◽  
pp. 2119-2139 ◽  
Author(s):  
A. K. Kochanski ◽  
E. R. Pardyjak ◽  
R. Stoll ◽  
A. Gowardhan ◽  
M. J. Brown ◽  
...  

AbstractSimulations of local weather and air quality in urban areas must account for processes spanning from meso- to microscales, including turbulence and transport within the urban canopy layer. Here, the authors investigate the performance of the building-resolving Quick Urban Industrial Complex (QUIC) Dispersion Modeling System driven with mean wind profiles from the mesoscale Weather Research and Forecasting (WRF) Model. Dispersion simulations are performed for intensive observation periods 2 and 8 of the Joint Urban 2003 field experiment conducted in Oklahoma City, Oklahoma, using an ensemble of expert-derived wind profiles from observational data as well as profiles derived from WRF runs. The results suggest that WRF can be used successfully as a source of inflow boundary conditions for urban simulations, without the collection and processing of intensive field observations needed to produce expert-derived wind profiles. Detailed statistical analysis of tracer concentration fields suggests that, for the purpose of the urban dispersion, WRF simulations provide wind forcing as good as individual or ensemble expert-derived profiles. Despite problems capturing the strength and the elevation of the Great Plains low-level jet, the WRF-simulated near-surface wind speed and direction were close to observations, thus assuring realistic forcing for urban dispersion estimates. Tests performed with multilayer and bulk urban parameterizations embedded in WRF did not provide any conclusive evidence of the superiority of one scheme over the other, although the dispersion simulations driven by the latter showed slightly better results.


2012 ◽  
Vol 29 (4) ◽  
pp. 487-499 ◽  
Author(s):  
K. S. Godwin ◽  
S. F. J. De Wekker ◽  
G. D. Emmitt

Abstract Airborne Doppler wind lidars are increasingly being used to measure winds in the lower atmosphere at higher spatial resolution than ever before. However, wind retrieval in the range gates closest to the earth’s surface remains problematic. When a laser beam from a nadir-pointing airborne Doppler wind lidar intercepts the ground, the return signal from the ground mixes with the windblown aerosol signal. As a result, winds in a layer adjacent to the surface are often unreliable and removed from wind profiles. This paper describes the problem in detail and discusses a two-step approach to improve near-surface wind retrievals. The two-step approach involves removing high-intensity ground returns and identifying and tracking aerosol radial velocities in the layer affected by ground interference. Using this approach, it is shown that additional range gates closer to the surface can be obtained, thereby further enhancing the potential of airborne Doppler lidar in atmospheric applications. The benefits of the two-step approach are demonstrated using measurements acquired over the Salinas Valley in central California. The additional range gates reveal details of the wind field that were previously not quantified with the original approach, such as a pronounced near-surface wind speed maximum.


2014 ◽  
Vol 155 (1) ◽  
pp. 111-127 ◽  
Author(s):  
Jinbao Song ◽  
Wei Fan ◽  
Shuang Li ◽  
Ming Zhou

2007 ◽  
Vol 135 (9) ◽  
pp. 3070-3085 ◽  
Author(s):  
Eric W. Uhlhorn ◽  
Peter G. Black ◽  
James L. Franklin ◽  
Mark Goodberlet ◽  
James Carswell ◽  
...  

Abstract For the first time, the NOAA/Aircraft Operations Center (AOC) flew stepped frequency microwave radiometers (SFMRs) on both WP-3D research aircraft for operational hurricane surface wind speed measurement in 2005. An unprecedented number of major hurricanes provided ample data to evaluate both instrument performance and surface wind speed retrieval quality up to 70 m s−1 (Saffir–Simpson category 5). To this end, a new microwave emissivity–wind speed model function based on estimates of near-surface winds in hurricanes by global positioning system (GPS) dropwindsondes is proposed. For practical purposes, utilizing this function removes a previously documented high bias in moderate SFMR-measured wind speeds (10–50 m s−1), and additionally corrects an extreme wind speed (>60 m s−1) underestimate. The AOC operational SFMRs yield retrievals that are precise to within ∼2% at 30 m s−1, which is a factor of 2 improvement over the NOAA Hurricane Research Division’s SFMR, and comparable to the precision found here for GPS dropwindsonde near-surface wind speeds. A small (1.6 m s−1), but statistically significant, overall high bias was found for independent SFMR measurements utilizing emissivity data not used for model function development. Across the range of measured wind speeds (10–70 m s−1), SFMR 10-s averaged wind speeds are within 4 m s−1 (rms) of the dropwindsonde near-surface estimate, or 5%–25% depending on speed. However, an analysis of eyewall peak wind speeds indicates an overall 2.6 m s−1 GPS low bias relative to the peak SFMR estimate on the same flight leg, suggesting a real increase in the maximum wind speed estimate due to SFMR’s high-density sampling. Through a series of statistical tests, the SFMR is shown to reduce the overall bias in the peak surface wind speed estimate by ∼50% over the current flight-level wind reduction method and is comparable at extreme wind speeds. The updated model function is demonstrated to behave differently below and above the hurricane wind speed threshold (∼32 m s−1), which may have implications for air–sea momentum and kinetic energy exchange. The change in behavior is at least qualitatively consistent with recent laboratory and field results concerning the drag coefficient in high wind speed conditions, which show a fairly clear “leveling off” of the drag coefficient with increased wind speed above ∼30 m s−1. Finally, a composite analysis of historical data indicates that the earth-relative SFMR peak wind speed is typically located in the hurricane’s right-front quadrant, which is consistent with previous observational and theoretical studies of surface wind structure.


2011 ◽  
Vol 41 (1) ◽  
pp. 247-251 ◽  
Author(s):  
Hans Hersbach

Abstract Near the surface, it is commonly believed that the behavior of the (turbulent) atmospheric flow can be well described by a constant stress layer. In the case of a neutrally stratified surface layer, this leads to the well-known logarithmic wind profile that determines the relation between near-surface wind speed and magnitude of stress. The profile is set by a surface roughness length, which, over the ocean surface, is not constant; rather, it depends on the underlying (ocean wave) sea state. For instance, at the European Centre for Medium-Range Weather Forecasts this relation is parameterized in terms of surface stress itself, where the scale is set by kinematic viscosity for light wind and a Charnock parameter for strong wind. For given wind speed at a given height, the determination of the relation between surface wind and stress (expressed by a drag coefficient) leads to an implicit equation that is to be solved in an iterative way. In this paper a fit is presented that directly expresses the neutral drag coefficient and surface roughness in terms of wind speed without the need for iteration. Since the fit is formulated in purely dimensionless quantities, it is able to produce accurate results over the entire range in wind speed, level height, and values for the Charnock parameter for which the implicit set of equations is believed to be valid.


2021 ◽  
Vol 9 ◽  
Author(s):  
Wenrui Jiang ◽  
Liguang Wu ◽  
Qingyuan Liu

The numerical simulation of tropical cyclones has been increasingly conducted using the advanced Weather Research and Forecast (WRF) model with the large-eddy simulation (LES) technique. Given the importance of the boundary wind profile for the vertical exchange of horizontal momentum between the atmosphere and the ocean, the drag coefficient was evaluated in the numerical simulation with the WRF-LES framework at the finest horizontal grid spacing of 37 m. In the absence of the TC–ocean interaction, the drag coefficient derived from the simulated wind profile does not show the leveling off or decrease in the strong wind conditions. The drag coefficient increases with the increasing near-surface wind speed and agrees well with the extrapolation of the Large and Pond formula in the strong wind conditions. It is suggested that the boundary wind structure simulated with the LES technique may be unrealistic when the TC–ocean interaction is not fully considered.


2014 ◽  
Vol 599-601 ◽  
pp. 1605-1609 ◽  
Author(s):  
Ming Zeng ◽  
Zhan Xie Wu ◽  
Qing Hao Meng ◽  
Jing Hai Li ◽  
Shu Gen Ma

The wind is the main factor to influence the propagation of gas in the atmosphere. Therefore, the wind signal obtained by anemometer will provide us valuable clues for searching gas leakage sources. In this paper, the Recurrence Plot (RP) and Recurrence Quantification Analysis (RQA) are applied to analyze the influence of recurrence characteristics of the wind speed time series under the condition of the same place, the same time period and with the sampling frequency of 1hz, 2hz, 4.2hz, 5hz, 8.3hz, 12.5hz and 16.7hz respectively. Research results show that when the sampling frequency is higher than 5hz, the trends of recurrence nature of different groups are basically unchanged. However, when the sampling frequency is set below 5hz, the original trend of recurrence nature is destroyed, because the recurrence characteristic curves obtained using different sampling frequencies appear cross or overlapping phenomena. The above results indicate that the anemometer will not be able to fully capture the detailed information in wind field when its sampling frequency is lower than 5hz. The recurrence characteristics analysis of the wind speed signals provides an important basis for the optimal selection of anemometer.


Atmosphere ◽  
2021 ◽  
Vol 12 (6) ◽  
pp. 766
Author(s):  
Yi Jiang ◽  
Shuai Han ◽  
Chunxiang Shi ◽  
Tao Gao ◽  
Honghui Zhen ◽  
...  

Near-surface wind data are particularly important for Hainan Island and the South China Sea, and there is a wide range of wind data sources. A detailed understanding of the reliability of these datasets can help us to carry out related research. In this study, the hourly near-surface wind data from the High-Resolution China Meteorological Administration (CMA) Land Data Assimilation System (HRCLDAS) and the fifth-generation ECMWF atmospheric reanalysis data (ERA5) were evaluated by comparison with the ground automatic meteorological observation data for Hainan Island and the South China Sea. The results are as follows: (1) the HRCLDAS and ERA5 near-surface wind data trend was basically the same as the observation data trend, but there was a smaller bias, smaller root-mean-square errors, and higher correlation coefficients between the near-surface wind data from HRCLDAS and the observations; (2) the quality of HRCLDAS and ERA5 near-surface wind data was better over the islands of the South China Sea than over Hainan Island land. However, over the coastal areas of Hainan Island and island stations near Sansha, the quality of the HRCLDAS near-surface wind data was better than that of ERA5; (3) the quality of HRCLDAS near-surface wind data was better than that of ERA5 over different types of landforms. The deviation of ERA5 and HRCLDAS wind speed was the largest along the coast, and the quality of the ERA5 wind direction data was poorest over the mountains, whereas that of HRCLDAS was poorest over hilly areas; (4) the accuracy of HRCLDAS at all wind levels was higher than that of ERA5. ERA5 significantly overestimated low-grade winds and underestimated high-grade winds. The accuracy of HRCLDAS wind ratings over the islands of the South China Sea was significantly higher than that over Hainan Island land, especially for the higher wind ratings; and (5) in the typhoon process, the simulation of wind by HRCLDAS was closer to the observations, and its simulation of higher wind speeds was more accurate than the ERA5 simulations.


2016 ◽  
Vol 30 (6) ◽  
pp. 961-982 ◽  
Author(s):  
Lili Jin ◽  
Zhenjie Li ◽  
Qing He ◽  
Qilong Miao ◽  
Huqiang Zhang ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document